Автор |
Leach, J. A. |
Автор |
Merkin, J. H. |
Автор |
Scott, S. K. |
Дата выпуска |
1991 |
dc.description |
A two-cell chemical oscillator, based on cubic autocatalysis, is considered, with the reaction in each identical cell being P → A; A + 2B → 3B; B → C. The coupling between the cells is assumed to take place by a linear exchange of either reactant A or autocatalyst B. In the former case, five possible stationary states are found with there being a range of parameter values over which non-symmetric stable stationary states can exist. In the latter case, the only possible stationary state is the same as for the uncoupled system. In both cases, Hopf bifurcations are found, leading to sequences of complex dynamical behaviour |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
An analysis of a two-cell coupled nonlinear chemical oscillator |
Тип |
research-article |
DOI |
10.1080/02681119108806122 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
6 |
Первая страница |
341 |
Последняя страница |
366 |
Аффилиация |
Leach, J. A.; Department of Applied Mathematics, University of Leeds |
Аффилиация |
Merkin, J. H.; Department of Applied Mathematics, University of Leeds |
Аффилиация |
Scott, S. K.; School of Chemistry, University of Leeds |
Выпуск |
4 |
Библиографическая ссылка |
Aronson, D. G. and Doedel, G. E. 1987. An analytical and numerical study at the bifurcations in a system of linearly coupled oscillations. Physica, D25: 20–104. |
Библиографическая ссылка |
Ashkenazi, M. and Othmer, H. G. 1978. Spatial patterns in coupled biochemical oscillators. Journal of Mathematical Biology, 5: 305–350. |
Библиографическая ссылка |
Benettin, G., Calgani, L. and Strelyn, J. M. 1976. Kolmogorov entropy and numerical experiments. Physical Review, A14: 2338 |
Библиографическая ссылка |
Eckmann, J. P. 1981. Roads to turbulence in dissipative dynamical systems. Reviews at Modern Physics, 53: 643–654. |
Библиографическая ссылка |
Former, J. D. 1981. Spectral broadening of period doubling bifurcation sequence. Physical Review Letters, 47: 179–182. |
Библиографическая ссылка |
Grantmacher, F. R. 1964. The Theory of Matrices, New York: Chelsea. |
Библиографическая ссылка |
Gray, B. F., Roberts, M. J. and Merkin, J. H. 1988. The cubic autocatalator: the influence of the quadratic autocatalytic and the uncatalysed reactions. Journal of Engineering Mathematics, 22: 267–284. |
Библиографическая ссылка |
Gray, B. F. and Merkin, J. H. 1989. On the structural stability of the cubic autocatalytic scheme in a closed vessel. Dynamics and Stability of Systems, 4: 31–54. |
Библиографическая ссылка |
Guckenheimer, J. 1983. Persistent properties of bifurcations. Physica, D7: 105–110. |
Библиографическая ссылка |
Hassard, B. D. and Kazarinoff, N. D. 1981. Theory and Applications of Hopf Bifurcation, Cambridge: University Press. |
Библиографическая ссылка |
Hocker, G. C. and Epstein, I. R. 1989. Analysis of a four-variable model of coupled chemical oscillators. The Journal of Chemical Physics, 90: 3071–3080. |
Библиографическая ссылка |
Huseyin, K. 1986. Multiple Parameter Stability Theory and its Applications, Oxford: Clarendon Press. |
Библиографическая ссылка |
Huseyin, K. and Yu, P. 1988. On bifurcations to nonresonant quasi-periodic motions. Applied Mathematical Modelling, 12: 189–201. |
Библиографическая ссылка |
Kaas-Petersen, C. 1989. “The software package PATH. Centre for Nonlinear Studies”. University of Leeds.. |
Библиографическая ссылка |
Kaplan, J. L. and Yorke, J. A. 1979. “Chaotic behaviour of multidimensional difference equations”. In Functional Differential Equations and Approximations of Fixed Points, Edited by: Peitgen, H. O. and Walther, H. O. Vol. 730, Berlin: Springer. Lecture Notes in Mathematics |
Библиографическая ссылка |
looss, G. 1980. “Interaction of Hopf and pitchfork bifurcations”. In Bifurcation Problems and their Numerical Solution, Edited by: Mittelmann, H. D. and Weber, H. Basel: Birkhauser. |
Библиографическая ссылка |
Merkin, J. H., Needham, D. J. and Scott, S. K. 1986. Oscillatory chemical reactions in closed vessels. Proceedings of the Royal Society, A406: 299–323. |
Библиографическая ссылка |
Merkin, J. H., Needham, D. J. and Scott, S. K. 1987a. On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme. SIAM Journal on Applied Mathematics, 47: 1040–1060. |
Библиографическая ссылка |
Merkin, J. H., Needham, D. J. and Scott, S. K. 1987b. On the structural stability at a simple pooled chemical system. Journal of Engineering Mathematics, 21: 115–127. |
Библиографическая ссылка |
Newhouse, S., Ruelle, D. and Takens, F. 1978. Occurrence of strange Axiom A attractors near quasi-periodic flows on Tm, m > 3. Communications in Mathematical Physics, 64: 35 |
Библиографическая ссылка |
Roux, J. C., Simoyi, R. H. and Swinney, H. L. 1983. Observation at a strange attractor. Physica, D8: 257–266. |
Библиографическая ссылка |
Thompson, J. M. T. and Stewart, H. B. 1980. Nonlinear Dynamics and Chaos, NeW York: Wiley. |
Библиографическая ссылка |
Tyson, J. and Kauffman, S. 1975. Control at mitosis by continuous biochemical oscillation: Synchronization. Spatially inhomogeneous oscillations. Journal of Mathematical Biology, 1: 289–310. |
Библиографическая ссылка |
Wolf, A. and Swift, J. 1981. Universal power spectrum for the reverse bifurcation sequence. Physics Letters, A83: 184–187. |