Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Doole, S. H.
Дата выпуска 1994
dc.description A class of initial-boundary value problems with a conserved first integral is studied. The class of problems includes particular cases of interest. In one parameter limit, the equations arise as a similarity reduction of the Navier-Stokes equations, which has been recently studied for its blow-up properties, and in another, a class of scalar reaction-diffusion equations, modified by the addition of a non-local non-linearity to ensure conservation of the first integral. Once the problem has been stated, it is shown how it may be derived from the Navier-Stokes equations in one parameter limit. Steady-state solutions are then constructed using a rigorous iterative method which we call Crandall Iteration. The steady solution set includes, in a particular parameter limit, those of the Cahn-Hilliard equation. Amplitude expansions and centre manifold theory are employed to analyze the heteroclinic orbits connecting these steady solutions. It is proved that Hopf bifurcation of periodic solutions cannot occur
Формат application.pdf
Издатель Journals Oxford Ltd
Копирайт Copyright Taylor and Francis Group, LLC
Название Dynamic bifurcation in a system of PDES with a conserved first integral
Тип research-article
DOI 10.1080/02681119408806178
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 9
Первая страница 197
Последняя страница 213
Аффилиация Doole, S. H.; Department of Engineering Mathematics, University of Bristol
Выпуск 3
Библиографическая ссылка Budd, C. J, Dold, J. W and Stuart, A. M. 1993. Blowup in a partial differential equation with conserved first integral. SIAM Journal on Applied Mathematics, 53: 718–742.
Библиографическая ссылка Budd, C. J, Dold, J. W and Stuart, A. M. 1994. Blowup in a system of partial differential equations with conserved first integral. 2. Problems with convection. SIAM Journal on Applied Mathematics, 54: 610–640.
Библиографическая ссылка Carr, J. 1981. Applications of the Centre Manifold Theory, Vol. 35, Springer, New York: Applied Mathematical Sciences.
Библиографическая ссылка Childress, S, Ierley, G. R, Spiegel, E. A and Young, W. R. 1989. Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation point form. Journal of Fluid Mechanics, 203: 1–22.
Библиографическая ссылка Chow, S.-N and Hale, J. K. Methods of Bifurcation Theory, Vol. 251, New York: Springer. Grundlehren
Библиографическая ссылка Crandall, M. G. 1977. “An introduction to constructive aspects of bifurcation and the implicit function theorem”. In Applications of Bifurcation Theory, Edited by: Rabinowitz, P. H. 1–36. New York: Academic Press.
Библиографическая ссылка Doole, S.H. Constructive aspects of steady and dynamic bifurcation. MSc Thesis. University of Bath.
Библиографическая ссылка Doedel, E and Kervenes, J. P. 1986. AUTO: Software for Continuation and Bifurcation in ODEs, pasadena: Technical Report Caltech.
Библиографическая ссылка Eilbeck, J. C, Furter, J. E and Grinfeld, M. 1989. On a stationary state characterization of transition from sp inodal decomposition to nucleation behaviour in the Cahn-Hilliard model of phase separation. Physics Letters A, 135: 272–275.
Библиографическая ссылка Fiedler, B and Polacik, P. 1990. Complicated dynamics of scalar reaction diffusion equations with a nonlocal term. Proceedings of the Royal Society of Edinburgh, 115A: 167–192.
Библиографическая ссылка Furter, J and Grinfeld, M. 1989. Local vs. non-local interactions in population dynamics. Journal of Mathematical Biology, 27: 65–80.
Библиографическая ссылка Golubitsky, M, Marsden, J. E and Schaeffer, D. G. 1984. “Bifurcation problems with hidden symmetries”. In Partial Differential Equations and Dynamical Systems, Edited by: Fitzgibbon , W. E. Vol. 101, Pitman, San Francisco: III; Research Notes in Mathematics.
Библиографическая ссылка Henry, D. 1981. Geometric Theory of Semilinear Parabolic Equations, Vol. 840, New York: Springer. Lecture Notes in Mathematics
Библиографическая ссылка Kato, T. 1967. On the classical solution of the two-dimensional, non-stationary Euler equation. Archive for Rational Mechanics and Analysis, 25: 188–200.
Библиографическая ссылка Maini, P. K, Dillon, R and Othmer, H. G. 1994. Pattern formation in generalized Turing systems. 1. Steady state patterns in systems with mixed boundary conditions. Journal of Mathematical Biology, 32: 345–393.
Библиографическая ссылка Matkowsky, B. J. 1970a. A simple nonlinear dynamic stability problem. Bulletin of the American Mathematical Society, 76: 620–625.
Библиографическая ссылка Matkowsky, B. J. 1970b. Nonlinear dynamic stability: a formal theory. SIAM Journal on Applied Mathematics, 18: 872–883.
Библиографическая ссылка Rand, R. H. and Armbruster, D. 1987. Perturbation Methods, Bifurcation Theory and Computer Algebra, Vol. 65, New York: Springer. Applied Mathematical Sciences
Библиографическая ссылка Stuart, J. T. 1988. “Nonlinear Euler partial differential equations: singularities in their solution”. In A Symposium to Honor C. C. Lin, Edited by: Beuney, D. J., Shu, F. H. and Yuan, C. 81–95. Singapore: World Scientific Publishing.
Библиографическая ссылка Temam, R. Navier Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conference Series In Applied Mathematics. Vol. 41, Philadelphia: SIAM.
Библиографическая ссылка Terrill, R. M. 1964. Laminar flow in a uniform porous channel. Aeronautical Quarterly, 15: 299–310.
Библиографическая ссылка Zaturska, M. B, Drazin, P. G and Banks, W. H. H. 1988. On the porous flow of a viscous fluid driven along a channel by suction at porous walls. Fluid Dynamics Research, 4: 151–178.

Скрыть метаданые