Автор |
Doole, S. H. |
Дата выпуска |
1994 |
dc.description |
A class of initial-boundary value problems with a conserved first integral is studied. The class of problems includes particular cases of interest. In one parameter limit, the equations arise as a similarity reduction of the Navier-Stokes equations, which has been recently studied for its blow-up properties, and in another, a class of scalar reaction-diffusion equations, modified by the addition of a non-local non-linearity to ensure conservation of the first integral. Once the problem has been stated, it is shown how it may be derived from the Navier-Stokes equations in one parameter limit. Steady-state solutions are then constructed using a rigorous iterative method which we call Crandall Iteration. The steady solution set includes, in a particular parameter limit, those of the Cahn-Hilliard equation. Amplitude expansions and centre manifold theory are employed to analyze the heteroclinic orbits connecting these steady solutions. It is proved that Hopf bifurcation of periodic solutions cannot occur |
Формат |
application.pdf |
Издатель |
Journals Oxford Ltd |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Dynamic bifurcation in a system of PDES with a conserved first integral |
Тип |
research-article |
DOI |
10.1080/02681119408806178 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
9 |
Первая страница |
197 |
Последняя страница |
213 |
Аффилиация |
Doole, S. H.; Department of Engineering Mathematics, University of Bristol |
Выпуск |
3 |
Библиографическая ссылка |
Budd, C. J, Dold, J. W and Stuart, A. M. 1993. Blowup in a partial differential equation with conserved first integral. SIAM Journal on Applied Mathematics, 53: 718–742. |
Библиографическая ссылка |
Budd, C. J, Dold, J. W and Stuart, A. M. 1994. Blowup in a system of partial differential equations with conserved first integral. 2. Problems with convection. SIAM Journal on Applied Mathematics, 54: 610–640. |
Библиографическая ссылка |
Carr, J. 1981. Applications of the Centre Manifold Theory, Vol. 35, Springer, New York: Applied Mathematical Sciences. |
Библиографическая ссылка |
Childress, S, Ierley, G. R, Spiegel, E. A and Young, W. R. 1989. Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation point form. Journal of Fluid Mechanics, 203: 1–22. |
Библиографическая ссылка |
Chow, S.-N and Hale, J. K. Methods of Bifurcation Theory, Vol. 251, New York: Springer. Grundlehren |
Библиографическая ссылка |
Crandall, M. G. 1977. “An introduction to constructive aspects of bifurcation and the implicit function theorem”. In Applications of Bifurcation Theory, Edited by: Rabinowitz, P. H. 1–36. New York: Academic Press. |
Библиографическая ссылка |
Doole, S.H. Constructive aspects of steady and dynamic bifurcation. MSc Thesis. University of Bath. |
Библиографическая ссылка |
Doedel, E and Kervenes, J. P. 1986. AUTO: Software for Continuation and Bifurcation in ODEs, pasadena: Technical Report Caltech. |
Библиографическая ссылка |
Eilbeck, J. C, Furter, J. E and Grinfeld, M. 1989. On a stationary state characterization of transition from sp inodal decomposition to nucleation behaviour in the Cahn-Hilliard model of phase separation. Physics Letters A, 135: 272–275. |
Библиографическая ссылка |
Fiedler, B and Polacik, P. 1990. Complicated dynamics of scalar reaction diffusion equations with a nonlocal term. Proceedings of the Royal Society of Edinburgh, 115A: 167–192. |
Библиографическая ссылка |
Furter, J and Grinfeld, M. 1989. Local vs. non-local interactions in population dynamics. Journal of Mathematical Biology, 27: 65–80. |
Библиографическая ссылка |
Golubitsky, M, Marsden, J. E and Schaeffer, D. G. 1984. “Bifurcation problems with hidden symmetries”. In Partial Differential Equations and Dynamical Systems, Edited by: Fitzgibbon , W. E. Vol. 101, Pitman, San Francisco: III; Research Notes in Mathematics. |
Библиографическая ссылка |
Henry, D. 1981. Geometric Theory of Semilinear Parabolic Equations, Vol. 840, New York: Springer. Lecture Notes in Mathematics |
Библиографическая ссылка |
Kato, T. 1967. On the classical solution of the two-dimensional, non-stationary Euler equation. Archive for Rational Mechanics and Analysis, 25: 188–200. |
Библиографическая ссылка |
Maini, P. K, Dillon, R and Othmer, H. G. 1994. Pattern formation in generalized Turing systems. 1. Steady state patterns in systems with mixed boundary conditions. Journal of Mathematical Biology, 32: 345–393. |
Библиографическая ссылка |
Matkowsky, B. J. 1970a. A simple nonlinear dynamic stability problem. Bulletin of the American Mathematical Society, 76: 620–625. |
Библиографическая ссылка |
Matkowsky, B. J. 1970b. Nonlinear dynamic stability: a formal theory. SIAM Journal on Applied Mathematics, 18: 872–883. |
Библиографическая ссылка |
Rand, R. H. and Armbruster, D. 1987. Perturbation Methods, Bifurcation Theory and Computer Algebra, Vol. 65, New York: Springer. Applied Mathematical Sciences |
Библиографическая ссылка |
Stuart, J. T. 1988. “Nonlinear Euler partial differential equations: singularities in their solution”. In A Symposium to Honor C. C. Lin, Edited by: Beuney, D. J., Shu, F. H. and Yuan, C. 81–95. Singapore: World Scientific Publishing. |
Библиографическая ссылка |
Temam, R. Navier Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conference Series In Applied Mathematics. Vol. 41, Philadelphia: SIAM. |
Библиографическая ссылка |
Terrill, R. M. 1964. Laminar flow in a uniform porous channel. Aeronautical Quarterly, 15: 299–310. |
Библиографическая ссылка |
Zaturska, M. B, Drazin, P. G and Banks, W. H. H. 1988. On the porous flow of a viscous fluid driven along a channel by suction at porous walls. Fluid Dynamics Research, 4: 151–178. |