Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ufuk, Taneri
Автор Koncay, Huseyin
Автор Pei, Yu
Дата выпуска 1995
dc.description The dynamics and stability of a three-dimensional model of dissipative molecular systems are studied in detail The model considered is produced by an approximate quantum formulation, and it contains two parameters. It has been demonstrated analytically that the system exhibits 'cusp catastrophe' as in the case of potential systems; however, the non-potential nature of the dissipative model is reflected by the existence of limit cycles bifurcating from the equilibrium surface. The critical lines in the parameter plane and the family of limit cycles bifurcating from equilibria are determined analytically, and it has been shown that they are unstable
Формат application.pdf
Издатель Journals Oxford Ltd
Копирайт Copyright Taylor and Francis Group, LLC
Название Analysis of bifurcations and stability properties of molecular systems
Тип research-article
DOI 10.1080/02681119508806200
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 10
Первая страница 149
Последняя страница 162
Аффилиация Ufuk, Taneri; Quantum Theory Group, Department of Applied Mathematics Faculty of Mathematics, University of Waterloo
Аффилиация Koncay, Huseyin; Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo
Аффилиация Pei, Yu; Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo
Выпуск 2
Библиографическая ссылка Abraham, E and Smith, S. D. 1982. Reports on Progress in Physics, 45: 815
Библиографическая ссылка Arrowsmith, D. K and Place, C. M. An Introduction to Dynamical Systems, Cambridge, , UK: Cambridge University Press.
Библиографическая ссылка Aviram, A and Ratner, P. E. 1974. Chemical Physics Letters, 29: 277
Библиографическая ссылка Guckenheimer, J. and Holmes, P. 1983. “Nonlinear Oscillations”. In Dynamical Systems and Bifurcations of Vector Fields, New York: Springer.
Библиографическая ссылка Haken, H. 1970. Handbuch der Physik, Berlin: Springer.
Библиографическая ссылка Heagy, J. F, Lu, Z. M, Yuan, J.M. and Vallieres, M. 1992. “Dynamics of driven molecular systems”. In Directions in Chaos, Edited by: Feng, D. H. and Juan, J. M. 332Singapore: World Scientific.
Библиографическая ссылка Huang, X. Y., Narducci, L. M. and Yuan, J. M. 1981. Physics Review, A23: 3083
Библиографическая ссылка Huseyin, K. 1975. Nonlinear Theory of Elastic Stability, Groningen: Noordhoff International.
Библиографическая ссылка Huseyin, K. 1978. vibrations and Stability of Multiple Parameter System, Alphenaan den Rijn: Sijtoff & Noordhoff.
Библиографическая ссылка Huseyin, K. 1986. Multiple Parameter Stability Theory and its Applications Bifurcations, Catastrophes,Instabilities, Oxford, , UK: Oxford University Press. Oxford Engineering Science Series 18
Библиографическая ссылка Jackson, E. T. 1989. Perspectives of Nonlinear Dynamics, Cambridge, , UK: Cambridge University Press.
Библиографическая ссылка Macke, B, Pessina, E. M, Segard, B and Zemmoari, J. 1991. Physics Review, A44(R5350)
Библиографическая ссылка Narducci, L. M and Yuan, J. M. 1980. Physics Review, A22: 261
Библиографическая ссылка Narducci, L. M., Mitra, S. S., Shatas, R. A. and Coulter, C. A. 1977. Physics Review, A16: 247
Библиографическая ссылка Yuan, J. M. and Lie, G. C. 1994. “Molecular Bistability and Chaos, Modern Nonlinear Optics, Part 3”. In Advances in Chemical Physics Series, Edited by: Evans, M. and Kielich, S. Vol. LXXXV, John Wiley & Sons.

Скрыть метаданые