Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jones, M. C. W.
Дата выпуска 1995
dc.description The method of multiple scales, in both space and time, is used to derive a set of three nonlinear coupled partial differential equations which model the evolution of a train of capillary-gravity waves contained in a channel of finite depth and which arise from the resonant interaction of the Nth and (N + l)th harmonics of the fundamental mode. These equations are used to investigate the stability of the waves to plane-wave perturbations, which may be longitudinal, transverse or oblique to the direction of the propagation of the waves.
Формат application.pdf
Издатель Journals Oxford Ltd
Копирайт Copyright Taylor and Francis Group, LLC
Название Evolution equations which model the ripples arising from an adjacent mode interaction
Тип research-article
DOI 10.1080/02681119508806201
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 10
Первая страница 163
Последняя страница 178
Аффилиация Jones, M. C. W.; Department of Pure Mathematics, Queen's University
Выпуск 2
Библиографическая ссылка Benjamin, T. B and Feir, J. E. 1967. The disintegration of wavetrains on deep water. Part 1. Theory. Journal of Fluid Mechanics, 27: 417–430.
Библиографическая ссылка Benney, D.J and Roskes, G.J. 1969. Wave instabilities. Studies in Applied Mathematics, 48: 377–385.
Библиографическая ссылка Davey, A and Stewartson, K. 1974. On three dimensional packets of surface waves. Proceedings of the Royal Society of London A, 338: 101–110.
Библиографическая ссылка Djordjevic, V. D and Redekopp, L. G. 1977. On two dimensional packets of capillary-gravity waves. Journal of Fluid Mechanics, 79: 703–714.
Библиографическая ссылка Hasimoto, H and Ono, H. 1972. Nonlinear modulation of gravity waves. Journal of the Physical Society of Japan, 33: 805–811.
Библиографическая ссылка Henderson, D. M and Hammack, J. L. 1987. Experiments on ripple instabilities, Part 1. Resonant triads. Journal ofFluid Mechanics, 184: 15–41.
Библиографическая ссылка Jones, M. C. W. 1992. Nonlinear stability of resonant capillary-gravity waves. Wave Motion, 15: 267–283.
Библиографическая ссылка Jones, M. C. W. 1993. On coupled differential equations which model the evolution of interacting capillary-gravity wave modes and related questions of stability. IMA Journal of Applied Mathematics, 50: 13–28.
Библиографическая ссылка McGoldrick, L. F. 1970. On Wilton's ripples: a special case of resonant interactions. Journal of Fluid Mechanics, 42: 193–200.
Библиографическая ссылка McGoldrick, L. F. 1972. On the rippling of small waves: a harmonic nonlinear nearly resonant interaction. Journal of Fluid Mechanics, 52: 725–751.
Библиографическая ссылка Nayfeh, A. H. 1970a. Finite amplitude surface waves in a liquid layer. Journal of Fluid Mechanics, 40: 671–684.
Библиографическая ссылка Nayfeh, A. H. 1970b. Triple- and quintuple-dimpled wave profiles in deep water. Physics of Fluids, 13: 545–550.
Библиографическая ссылка Nayfeh, A. H. 1971. Journal of Fluid Mechanics, 48: 384–395.
Библиографическая ссылка Nayfeh, A. H. 1973. Second harmonic resonance in the interaction of an air stream with capillary- gravity waves. Journal of Fluid Mechanics, 59: 803–816.
Библиографическая ссылка Perlin, M and Hammack, J. 1991. Experiments on ripple instabilities. Part 3. Resonant quartets of the Benjamin-Feir type. Journal of Fluid Mechanics, 229: 229–268.
Библиографическая ссылка Zakharov, V. E. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 2: 190–194.
Библиографическая ссылка Zhang, J and Melville, W. K. 1987. Three dimensional instabilities of nonlinear gravity-capillary waves. Journal of Fluid Mechanics, 174: 187–208.

Скрыть метаданые