Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Glendinning, Paul
Дата выпуска 1995
dc.description Degree-one maps of the circle which are monotonic but have a single point of discontinuity and a single plateau arise naturally in a variety of contexts. Properties of rotation numbers associated with such maps are investigated, and in particular the dependence of the rotation number on the value assigned to the map at the point of discontinuity is discussed. The unfolding of a codimension-two bifurcation is also described.
Формат application.pdf
Издатель Journals Oxford Ltd
Копирайт Copyright Taylor and Francis Group, LLC
Название Bifurcations And Rotation Numbers for Maps of The Circle Associated With Flows on The Torus And Models of Cardiac Arrhythmias
Тип research-article
DOI 10.1080/02681119508806212
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 10
Первая страница 367
Последняя страница 386
Аффилиация Glendinning, Paul; Department of Applied Mathematics and Theoretical Physics
Выпуск 4
Библиографическая ссылка Arnold, V. I. 1991. Cardiac arrhythmias and circle mappings. Chaos, 1: 20–24.
Библиографическая ссылка Baesens, C., Gluckenheimer, J., Kim, S. and MacKay, R. S. 1991. Three coupled oscillators-mode-locking, global bifurcations and toroidal chaos. Physica D, 49: 387–475.
Библиографическая ссылка Belair, J. 1986. Periodic pulsatile stimulation of a nonlinear oscillator. Journal of Mathematical Biology, 24: 217–232.
Библиографическая ссылка Berry, D. and Mestel, B. 1991. Wandering intervals for Lorenz maps with bounded nonlinearity. Bulletin of the London Mathematical Society, 23: 183–189.
Библиографическая ссылка Cherry, T. M. 1938. Analytic quasi-periodic curves of discontinuous type on the torus. Proceedings of the London Mathematical Society, 44: 175–215.
Библиографическая ссылка Denjoy, A. 1932. Sur les courbes définies par les équations différentielles à la surface du tore. Journal de Mathematiques Pures et Appliqués, 11: 333–375.
Библиографическая ссылка Gambaudo, J. M., Lanford, O. E. III. and Tresser, C. 1984. Djmamique symboHque des rotations. Comptes Rendus à l'Académie des Sciences de Paris, Série I, 299: 823–826.
Библиографическая ссылка Gambaudo, J. M. and Tresser, C. 1985. Dynamique regulière ou chaotique: applications du cercle ou de I'intervale ayant une discontinuityé. Comptes Rendus à l'Académie des Sciences de Paris, Série I, 300: 311–313.
Библиографическая ссылка Glass, L. 1991. Cardiac arrhythmias and circle maps-a classical problem. Chaos, 1: 13–20.
Библиографическая ссылка Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Библиографическая ссылка Gumey, W. S. C., Crowley, P. H. and Nisbet, R. M. 1992. Locking life-cycles onto seasons: circle-map models of population dynamics and local adaptation. Journal of Mathematical Biology, 30: 251–279.
Библиографическая ссылка Keener, J. P. 1980. Chaotic behavior in piecewise continuous difference equations. Transactions of the American Mathematical Society, 261: 589–604.
Библиографическая ссылка MacKay, R. S. and Tresser, C. 1984. Transition to chaos for two-frequency systems. Journal de Physique Letters, 45: L741–L746.
Библиографическая ссылка Martens, M., van Strien, S., de Melo, W. and Mendes, P. 1990. On Cherry flows. Ergodic Theory and Dynamical Systems, 10: 531–554.
Библиографическая ссылка Martens, M., de Melo, W. and van Strien, S. 1992. Julia-Fatou-SuUivan theory for real onedimensional maps. Acta Mathematica, 168: 273–318.
Библиографическая ссылка Ostlund, S., Rand, D. A., Sethna, J. and Siggia, E. 1983. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. Physica D, 8: 303–342.
Библиографическая ссылка Procaccia, I., Thomae, S. and Tresser, C. 1987. First-return maps as a unified renormalization scheme for djmamical systems. Physics Review A, 35: 1884–1900.
Библиографическая ссылка Rhodes, F. and Thompson, C. L. 1986. Rotation numbers for monotone functions on the circle. Journal of the London Mathematical Society, 34: 360–368.
Библиографическая ссылка Rhodes, F. and Thompson, C. L. 1991. Topologies and rotation numbers for families of monotone functions on the circle. Journal of the London Mathematical Society, 43: 156–170.
Библиографическая ссылка van Strien, S. “Smooth dynamics on the interval (with an emphasis on unimodal maps)”. In New Directions in Dynamical Systems, Edited by: Bedford, T. and Swift, J. Vol. 127, Cambridge: Cambridge University Press.

Скрыть метаданые