Автор |
Doole, S. H. |
Автор |
Hogan, S. J. |
Дата выпуска |
1996 |
dc.description |
The effect of harmonic excitation on suspension bridges is examined as a first step towards the understanding of the effect of wind, and possibly certain kinds of earthquake, excitation on such structures. The Lazer-McKenna suspension bridge model is studied completely for the first time by using a methodology that has been successfully applied to models of rocking blocks and other free-standing rigid structures. An unexpectedly rich dynamical structure is revealed in this way. Conditions for the existence of asymptotic periodic responses are established, via a complicated nonlinear transcen- dental equation. A two-part Poincare map is derived to study the orbital stability of such solutions. Numerical results are presented which illustrate the application of the analytical procedure to find and classify stable and unstable solutions, as well as determine bifurcation points accurately. The richness of the possible dynamics is then illustrated by a menagerie of solutions which exhibit fold and flip bifurcations, period doubling, period adding, and sub- and superharmonic coexistence of solutions. The solutions are shown both in the phase plane and as Poincare map fixed points under parameter continuation using the package AUTO. Such results illustrate the possibility of the coexistence of 'dangerous', large-amplitude responses at the same point of parameter space as 'safe' solutions. The feasibility of experimental verification of the results is discussed. |
Формат |
application.pdf |
Издатель |
Journals Oxford Ltd |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A piece wise linear suspension bridge model: nonlinear dynamics and orbit continuation |
Тип |
research-article |
DOI |
10.1080/02681119608806215 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
11 |
Первая страница |
19 |
Последняя страница |
47 |
Аффилиация |
Doole, S. H.; Department of engineering mathematics, Bristol University |
Аффилиация |
Hogan, S. J.; Department of engineering mathematics, Bristol University |
Выпуск |
1 |
Библиографическая ссылка |
Billah, K. Y. and Scanlan, R. H. 1991. Resonance,Tacoma Narrows Bridge failure,and undergraduate physics textbooks. American Journal of Physics, 59: 118–124. |
Библиографическая ссылка |
Bishop, S.R. 1994. Impact of oscillators. Philosophical Transactions of the Royal Society of London, 347: 347–35. Series |
Библиографическая ссылка |
Brownjohn, J. M. W. 1994. Observations on non-linear dynamic characteristics of suspension bridges. Earthquake engineering and structural dynamics, 23: 1351–1367. |
Библиографическая ссылка |
Budd, C. Grazing in impact oscillators. Proceedings of the 1993 NATO Summer School on Complex Dynamical Systems. in press |
Библиографическая ссылка |
Budd, C. and Dux, F. 1994. Chattering and related behaviour in impact oscillations. Philosophical transactions of the royal society london, A347: 365–389. Series |
Библиографическая ссылка |
Budd, C., Dux, F and Cliffe, A. 1995. The effect of frequency and clearance variations on single. Journal of Sound and Vibration, 184: 475–502. |
Библиографическая ссылка |
Choi, Q. H. and Jung, T. 1991. On periodic solutions of the nonlinear suspension bridge equation. Differential and Integral Equations, 4: 383–396. |
Библиографическая ссылка |
Choi, Q. H., Jung,, T. and McKenna, P. J. 1993. The study of a nonlinear suspension bridge equation. Applicable Analysis, 50: 73–92. |
Библиографическая ссылка |
Choi, Y. S., Jen, K. C. and McKenna, P. J. 1991. The structure of the solution set for periodic oscillations in a suspension bridge model. IMA Journal of Applied Mathematics, 47: 283–306. |
Библиографическая ссылка |
Doedel, E. and Kerneves, J. P. 1986. “AUTO: Software for continuation and bifurcation problems in ordinary differential equations”. In Applied Mathematics Report, Pasadena, , CA: California Institute of Technology. |
Библиографическая ссылка |
Elvey, J. S. N. 1983. On the elimination of destabilizing motions of articulated mooring towers under steady sea conditions. IMA Journal of Applied Mathematics, 31: 235–252. |
Библиографическая ссылка |
Farquharson, F. B. 1950,1941. Aerodynamic stability of suspension bridges with special reference to the tacoma narrows bridge: part I. Investigation prior to october, Seattle, WA: University of Washington Press. |
Библиографическая ссылка |
Foale, S. and Bishop, S. R. 1992. Dynamical complexities of forced impacting systems. Philosophical transactions of the royal society london,, A338: 547–556. Series |
Библиографическая ссылка |
Fonda, A and Ramos, M. 1994. Large-amplitude subharmonic oscillations for scalar second order. Journal of differential equations, 109: 354–372. |
Библиографическая ссылка |
Fonda, A, Schneider, Z and Zanolin, F. 1994. Periodic oscillations for a nonlinear suspension bridge model. Journal of computational applied mathematics, 52: 113–140. |
Библиографическая ссылка |
Glover, J, Lazer, A.C and McKenna, P.J. 1989. Existence and stability of large scale nonlinear oscillations in suspension bridges. ZAMP, 40: 172–200. |
Библиографическая ссылка |
Guekenheimer, J and Holmes, P. 1986. “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields”. In Applied mathematical sciences, Vol. 42, New York: Springer. |
Библиографическая ссылка |
Hogan, S.J. 1989. On the dynamics of rigid-block motion under harmonic forcing. Proceedings of the Royal Society London, 425: 441–476. Series A |
Библиографическая ссылка |
Hogan, S.J. 1990. The many steady state responses of a rigid block under harmonic forcing. Earthquake engineering structural dynamics, 19: 1057–1071. |
Библиографическая ссылка |
Hogan, S.J. 1992a. The effect of damping on rigid block motion under harmonic forcing. Proceedings of the Royal Society London, 437: 97–108. Series A |
Библиографическая ссылка |
Hogan, S.J. 1992b. Heteroclinic bifuractions in damped rigid block motion. Proceedings of the Royal Society London, 439: 155–162. Series A |
Библиографическая ссылка |
Hogan, S. J. 1994. Slender rigid block motion. Journal of engineering mechanics ASCE, 120: 11–24. |
Библиографическая ссылка |
Jacover, D and McKenna, P.J. 1994. Nonlinear torsional flexings in a periodically forced suspended beam. Journal of Computational Annales and Applied Mathematics, 52: 241–265. |
Библиографическая ссылка |
Lazer, A. C. and McKenna, P. J. 1987. Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare: Analyse Non Lineaire, 4: 243–274. |
Библиографическая ссылка |
Lazer, A. C. and McKenna, P. J. 1990. Large-amplitude periodic oscillations in suspension bridges: some new connection with nonlinear analysis. SIAM Review, 32: 537–578. |
Библиографическая ссылка |
Lazer, A. C. and McKenna, P. J. 1991. Nonlinear flexings in a periodically forced floating beam. Mathematical Methods in the Applied Sciences, 14: 1–33. |
Библиографическая ссылка |
McKenna, P. J. 1992. Letters to the editor: let's twist again. American Scientist, 80: 3–4. |
Библиографическая ссылка |
Nordmark, A.B. 1991. Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound and Vibration, 145: 279–297. |
Библиографическая ссылка |
Nordmark, A.B. 1992. Effects due to low velocity impact in mechanical oscillators. International Journal of Bifurcation and Chaos, 2: 597–605. |
Библиографическая ссылка |
Ostenfeld, K. H. and Larsen, A. Bridge engineering and acrodynamics. Proceedings of the first international conference on aerodynamics of large bridges. 19-21 February1992, Copenhagen. pp.3–22. Rotterdam: A. A. Balkema. |
Библиографическая ссылка |
Peterson, I. 1990. Rock and roll bridge. Science News, 137: 344–346. |
Библиографическая ссылка |
Petroski, H. 1991. Engineering: still twisting. American Scientis, 79: 398–401. |
Библиографическая ссылка |
Shaw, S. W. 1985. The dynamics of a harmonically excited system having rigid amplitude contraints. ASME Journal of Applied Mechanic, 52 February: 453–458. |
Библиографическая ссылка |
Shaw, S. W. 1985. The dynamics of a harmonically excited system having rigid amplitude. ASME Journal of Applied Mechanics, 52 February: 459–464. |
Библиографическая ссылка |
Shaw, S. W. and Holmes, P. J. 1983. A periodically forced piecewise linear oscillator. Journal of Sound and Vibration, 90: 129–155. |
Библиографическая ссылка |
Stensson, A and Nordmark, A.B. 1994. Experimental investigation of some consequences of low. Philosophical Transactions of the Royal Society London, Series A, 347 February: 439–448. |
Библиографическая ссылка |
Thompson, J.M T, Bokian, A.R and Ghaffari, R. 1983. Subharmonic resonances and chaotic motions of a bilinear oscillator. IMA Journal of Applied Mathematics, 31 February: 207–234. |
Библиографическая ссылка |
Thomson, W.T. 1993. Theory of Vibration with Applications, New York: Prentice Hall. |
Библиографическая ссылка |
Timoshenko, S. 1928. Vibration Problems in Engineering, London: Constable. |
Библиографическая ссылка |
Whiston, G.S. 1987. Global dynamics of a vibro-impacting linear oscillator. Journal of Sound and Vibration, 118: 395–429. |
Библиографическая ссылка |
Whiston, G.S. 1987. The vibro-impact response of a harmonically excited and preloaded one- dimensional linear oscillator. Journal of Sound and Vibration, 115: 303–319. |
Библиографическая ссылка |
Whiston, G.S. 1992. Singularities in vibro-impact dynamics. Journal of Sound and Vibration, 152: 427–460. |