Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Zhang, Weinian
Автор Stewart, Ian
Дата выпуска 1996
dc.description The existence of bounded solutions (including in particular homoclinic and heteroclinic solutions) is studied for non-autonomous perturbed parabolic partial differential equations, without the restriction that the linear variational equation has a unique non-trivial bounded solution. Specifically, an idea applied to ordinary differential equations by Hale (1984) and by Battelli and Laari (1990) is realised in an infinite-dimensional setting. Like other work on related problems, the main technique is Lyapunov?Schmidt reduction; we use that technique here in the context of bounded solutions, rather than the more usual setting of periodic or homoclinic solutions. Moreover, several technical obstacles are circumvented in the infinite-dimensional setting?in particular in the proof of the existence of a solution to the reduced bifurcation equation. Non-uniqueness is shown to occur for the Kuramoto-Sivashinsky equation, demonstrating the need to remove the uniqueness restriction
Формат application.pdf
Издатель Journals Oxford Ltd
Копирайт Copyright Taylor and Francis Group, LLC
Название Bounded solutions for non-autonomous parabolic equations
Тип research-article
DOI 10.1080/02681119608806219
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 11
Первая страница 109
Последняя страница 120
Аффилиация Zhang, Weinian; Centre for Mathematical Sciences, CICA, Academia Sinica
Аффилиация Stewart, Ian; Mathematics Institute, University of Warwick
Выпуск 2
Библиографическая ссылка Battelli, F and Laari, C. 1990. Exponential dichotomies, heteroclinic orbits and Melnikov functions. Journal of Differential Equations, 86: 342–366.
Библиографическая ссылка Blazquez, C. M. 1986. Bifurcation from a homoclinic orbit in parabolic differential equations. Proceedings of the Royal Society of Edinburgh, 103A: 265–274.
Библиографическая ссылка Blazquez, C. M. 1986. Transverse homoclinic orbits in periodically perturbed parabolic equations. Nonlinear Analysis, 10: 1277–1291.
Библиографическая ссылка Chow, S. N, Hale, J. K and Mallet-Paret, J. 1986. An example of bifurcation to homoclinic orbits. Journal of Differential Equations, 37: 351–373.
Библиографическая ссылка Conley, C. C. “On Traveling Wave Solutions of Nonlinear Diffusion Equations”. In Lecture Notes inPhysics 38
Библиографическая ссылка Golubitsky, M and Schaeffer, D. G. “Singularities and Groups in Bifurcation Theory”. In Applied Mathematical Sciences 51, Vol. 51, New York: Springer.
Библиографическая ссылка Golubitsky, M., Stewart, I. N. and Schaeffer, D. G. “Singularities and Groups in BifurcationTheory”. In Applied Mathematical Sciences 69
Библиографическая ссылка Gruendler, J. 1985. The existence of homoclinic orbits and the method of Melnikov for systems in R". SIAM Journal of Mathematical Analysis, 16: 907–931.
Библиографическая ссылка Hale, J. K. “Generic bifurcation with applications”. In Nonlinear Analysis and Mechanics:Heriot-Watt-Symposium, Edited by: Knops, R. 59–157. London: Pitman. Research Notes in Mathematics 17
Библиографическая ссылка Hale, J. K. “Introduction to dynamic bifurcation”. In Bifurcation Theory and Applications 106–151.
Библиографическая ссылка Hale, J. K and Lin, X. B. 1986. Heteroclinic orbits for retarded functional differential equations. Journal of Differential Equations, 65: 175–202.
Библиографическая ссылка Henry, D. “Geometric Theory of Semilinear Parabolic Equations”. In Lecture Notes in Mathematics840
Библиографическая ссылка Holmes, P. J and J. E. 1981. A partial differential equation with infinitely many periodicorbits: chaotic oscillations of a forced beam. Archive for Rational Mechanics and Analysis, 76: 135–165.
Библиографическая ссылка Kevrekedis, I. G and Nicolaenko, B. 1981. Back in the saddle again:a computerassisted study of the Kuramoto-Sivashinsky equation. SIAM Journal of Applied Mathematics, 50: 760–790.
Библиографическая ссылка Lin, X. B. 1986. Exponential dichotomies and transversal homoclinic points. Journal of DifferentialEquations, 63: 227–254.
Библиографическая ссылка Lin, X. B. 1990. Using melnikov's method to solve Šilnikov's problems. Proceedings of the royal society of Edinburgh, 116A: 295–325.
Библиографическая ссылка Palmer, K. J. 1984. Exponential dichotomies and transversal homoclinic points. Journal of Differential Equations, 55: 225–256.
Библиографическая ссылка Smoller, J. Shock Waves and Reaction-Diffusion Equations
Библиографическая ссылка Vanderbauwhede, A. 1992. Bifurcation of degenerate homoclinic solutions. Results in Mathematics, 21: 211–223.
Библиографическая ссылка Zhang, W. 1995. The Fredholm alternative and exponential dichotomies for parabolic equations. Journal of Mathematical Analysis and Applications, 191: 180–201.

Скрыть метаданые