Автор |
Zhang, Weinian |
Автор |
Stewart, Ian |
Дата выпуска |
1996 |
dc.description |
The existence of bounded solutions (including in particular homoclinic and heteroclinic solutions) is studied for non-autonomous perturbed parabolic partial differential equations, without the restriction that the linear variational equation has a unique non-trivial bounded solution. Specifically, an idea applied to ordinary differential equations by Hale (1984) and by Battelli and Laari (1990) is realised in an infinite-dimensional setting. Like other work on related problems, the main technique is Lyapunov?Schmidt reduction; we use that technique here in the context of bounded solutions, rather than the more usual setting of periodic or homoclinic solutions. Moreover, several technical obstacles are circumvented in the infinite-dimensional setting?in particular in the proof of the existence of a solution to the reduced bifurcation equation. Non-uniqueness is shown to occur for the Kuramoto-Sivashinsky equation, demonstrating the need to remove the uniqueness restriction |
Формат |
application.pdf |
Издатель |
Journals Oxford Ltd |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Bounded solutions for non-autonomous parabolic equations |
Тип |
research-article |
DOI |
10.1080/02681119608806219 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
11 |
Первая страница |
109 |
Последняя страница |
120 |
Аффилиация |
Zhang, Weinian; Centre for Mathematical Sciences, CICA, Academia Sinica |
Аффилиация |
Stewart, Ian; Mathematics Institute, University of Warwick |
Выпуск |
2 |
Библиографическая ссылка |
Battelli, F and Laari, C. 1990. Exponential dichotomies, heteroclinic orbits and Melnikov functions. Journal of Differential Equations, 86: 342–366. |
Библиографическая ссылка |
Blazquez, C. M. 1986. Bifurcation from a homoclinic orbit in parabolic differential equations. Proceedings of the Royal Society of Edinburgh, 103A: 265–274. |
Библиографическая ссылка |
Blazquez, C. M. 1986. Transverse homoclinic orbits in periodically perturbed parabolic equations. Nonlinear Analysis, 10: 1277–1291. |
Библиографическая ссылка |
Chow, S. N, Hale, J. K and Mallet-Paret, J. 1986. An example of bifurcation to homoclinic orbits. Journal of Differential Equations, 37: 351–373. |
Библиографическая ссылка |
Conley, C. C. “On Traveling Wave Solutions of Nonlinear Diffusion Equations”. In Lecture Notes inPhysics 38 |
Библиографическая ссылка |
Golubitsky, M and Schaeffer, D. G. “Singularities and Groups in Bifurcation Theory”. In Applied Mathematical Sciences 51, Vol. 51, New York: Springer. |
Библиографическая ссылка |
Golubitsky, M., Stewart, I. N. and Schaeffer, D. G. “Singularities and Groups in BifurcationTheory”. In Applied Mathematical Sciences 69 |
Библиографическая ссылка |
Gruendler, J. 1985. The existence of homoclinic orbits and the method of Melnikov for systems in R". SIAM Journal of Mathematical Analysis, 16: 907–931. |
Библиографическая ссылка |
Hale, J. K. “Generic bifurcation with applications”. In Nonlinear Analysis and Mechanics:Heriot-Watt-Symposium, Edited by: Knops, R. 59–157. London: Pitman. Research Notes in Mathematics 17 |
Библиографическая ссылка |
Hale, J. K. “Introduction to dynamic bifurcation”. In Bifurcation Theory and Applications 106–151. |
Библиографическая ссылка |
Hale, J. K and Lin, X. B. 1986. Heteroclinic orbits for retarded functional differential equations. Journal of Differential Equations, 65: 175–202. |
Библиографическая ссылка |
Henry, D. “Geometric Theory of Semilinear Parabolic Equations”. In Lecture Notes in Mathematics840 |
Библиографическая ссылка |
Holmes, P. J and J. E. 1981. A partial differential equation with infinitely many periodicorbits: chaotic oscillations of a forced beam. Archive for Rational Mechanics and Analysis, 76: 135–165. |
Библиографическая ссылка |
Kevrekedis, I. G and Nicolaenko, B. 1981. Back in the saddle again:a computerassisted study of the Kuramoto-Sivashinsky equation. SIAM Journal of Applied Mathematics, 50: 760–790. |
Библиографическая ссылка |
Lin, X. B. 1986. Exponential dichotomies and transversal homoclinic points. Journal of DifferentialEquations, 63: 227–254. |
Библиографическая ссылка |
Lin, X. B. 1990. Using melnikov's method to solve Šilnikov's problems. Proceedings of the royal society of Edinburgh, 116A: 295–325. |
Библиографическая ссылка |
Palmer, K. J. 1984. Exponential dichotomies and transversal homoclinic points. Journal of Differential Equations, 55: 225–256. |
Библиографическая ссылка |
Smoller, J. Shock Waves and Reaction-Diffusion Equations |
Библиографическая ссылка |
Vanderbauwhede, A. 1992. Bifurcation of degenerate homoclinic solutions. Results in Mathematics, 21: 211–223. |
Библиографическая ссылка |
Zhang, W. 1995. The Fredholm alternative and exponential dichotomies for parabolic equations. Journal of Mathematical Analysis and Applications, 191: 180–201. |