Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Al-Nayef, A.
Автор Diamond, P.
Автор Kloeden, P.
Автор Kozyakin, V.
Автор Pokrovskii, A.
Дата выпуска 1996
dc.description Bi-shadowing is an extension to the concept of shadowing and is usually used in the context of comparing computed trajectories with the true trajectories of a dynamical system in Rn. Here the concept is defined in a Banach space and is applied to delay equations to give an apparently new result on nonlinear perturbations of linear delay equations. This is essentially a form of robustness with respect to small nonlinear disturbances.
Формат application.pdf
Издатель Journals Oxford Ltd
Копирайт Copyright Taylor and Francis Group, LLC
Название Bi-shadowing and delay equations
Тип research-article
DOI 10.1080/02681119608806220
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 11
Первая страница 121
Последняя страница 134
Аффилиация Al-Nayef, A.; School of Computing and Mathematics, Deakin Univesity
Аффилиация Diamond, P.; Department of Mathematics, University of Queensland
Аффилиация Kloeden, P.; School of Computing and Mathematics, Deakin Univesity
Аффилиация Kozyakin, V.; Russian Academy of Sciences, Institute of Information Transmission Problems
Аффилиация Pokrovskii, A.; School of Computing and Mathematics, Deakin Univesity
Выпуск 2
Библиографическая ссылка Alexandroff, P and Hopf, H. 1974. Topologie, Berlin: Springer.
Библиографическая ссылка Anosov, D. 1967. Geodesic flows on closed Riemannian manifolds with negative curvature. Proceed- ings of the Steklov Institute of Mathematics, 90: 1–235.
Библиографическая ссылка Chow, S.N.,, Lin, X.-B and Palmer, K. J. 1967. A shadowing lemma with applications to semilinear parabolic equations. SIAM Journal of Mathematical Analysis, 20: 547–557.
Библиографическая ссылка DeVito, C. L. 1990. Functional Analysis and Operator Theory, Redwood City, CA: Addison-Wesley.
Библиографическая ссылка Diamond, P, Kloeden, P, Kozyakin, V, Krasnosel'skii, M. and Pokrovskii, A. 1995a. Robustness of trajectories of dynamical systems with respect to a class of hysteresis perturbations. Doklady Akademii Nauk, 343: 1–3. [English translation to appear in Physics Doklady
Библиографическая ссылка Diamond, P.,, Kloeden, P.,, Kozyakin, V. and Pokrovskii, A. 1995b. Semi-hyperbolic mappings. Journal of Nonlinear Science, 5: 419–431.
Библиографическая ссылка Diamond, P.,, Kloeden, P.,, Kozyakin, V. and Pokrovskii, A. 1995c. Expansivity of semi-hyperbolic Lipschitz mappings. Bulletin of Australian Mathematical Society, 51: 301–308.
Библиографическая ссылка Diamond, P.,, Kloeden, P.,, Kozyakin, V. and Pokrovskii, A. 1995d. Computer robustness of semi- hyperbolic mappings. Random & Computational Dynamics, 3: 57–70.
Библиографическая ссылка Diamond, P.,, Kloeden, P.,, Kozyakin, V. and Pokrovskii, A. in press. Robustness of observed behaviour of semi-hyperbolic dynamical systems. Automation and Remote Control,
Библиографическая ссылка Hale, J. K. 1979. Theory of Functional Differential Equations, New York: Springer.
Библиографическая ссылка Hale, J. K. and Lunel, S. M. V. 1993. Introduction to Functional Differential Equations, New York: Springer.
Библиографическая ссылка Krasnosel'skii, M. and Pokrovskii, A. 1989. Systems with Hysteresis, New York: Springer.
Библиографическая ссылка Palis, J. and de Melo, W. Geometric Theory of Dynamical Systems. An Introduction
Библиографическая ссылка Pilyugin, S. Yu. 1994. The Space of Dynamical Systems with the C°-Topology, Vol. 1571, Heidelberg: Springer. Lecture Notes in Mathematics
Библиографическая ссылка Reisz, F. and Nagy, B. Sz. 1978. Functional Analysis, New York: Frederick Ungar.
Библиографическая ссылка Ruelle, D. 1989. Elements of Differentiable Dynamics and Bifurcations Theory, Boston, MA: Academic Press.
Библиографическая ссылка Steinlein, H. and Walther, H.-O. 1989. “Hyperbolic sets and shadowing for non-invertible maps.”. In Advanced Topics in the Theory of Dynamical Systems, Edited by: Fusco, G., Ianelli, M. and Salvadori, L. 219–234. New York: Academic Press.

Скрыть метаданые