Автор |
Kirk, Vivien |
Автор |
Marsden, Jerrold E. |
Автор |
Silber, Mary |
Дата выпуска |
1996 |
dc.description |
This paper uses Hamiltonian methods to find and determine the stability of some new solution branches for an equivanant Hopf bifurcation on . The normal form has a symmetry group given by the semi-direct product of D <sub>2</sub> with T <sup>2</sup> × S <sup>1</sup>. The Hamiltonian part of the normal form is completely integrable and may be analyzed using a system of invariants. The idea of the paper is to perturb relative equilibria in this singular Hamiltonian limit to obtain new three-frequency solutions to the full normal form for parameter values near the Hamiltonian limit. The solutions obtained have fully broken symmetry, that is, they do not lie in fixed point subspaces. The methods developed in this paper allow one to determine the stability of this new branch of solutions. An example shows that the branch of three-tori can be stable. |
Формат |
application.pdf |
Издатель |
Journals Oxford Ltd |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Branches of stable three-tori using Hamiltonian methods in hopf bifurcation on a rhombic lattice |
Тип |
research-article |
DOI |
10.1080/02681119608806228 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
11 |
Первая страница |
267 |
Последняя страница |
302 |
Аффилиация |
Kirk, Vivien; Department of Mathematics, University of Auckland |
Аффилиация |
Marsden, Jerrold E.; Control and Dynamical Systems 104–44, California Institute of Technology |
Аффилиация |
Silber, Mary; Department of Engineering Sciences & Applied Mathematics, Northzuestem University |
Выпуск |
4 |
Библиографическая ссылка |
Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. and Ratiu, T. S. 1994. Dissipation induced instabilities. Annales Institute Henri Poincaré Analyse Nonlineare, 11: 37–90. |
Библиографическая ссылка |
Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. and Ratiu, T. S. 1996. The Euler-Poincaré equations and double bracket dissipation. Communications in Mathematics and Physics, 175: 1–42. |
Библиографическая ссылка |
Chossat, P. 1993. Forced reflectional symmetry breaking of an O(2) symmetric homoclinic cycle. Nonlinearity, 6: 723–731. |
Библиографическая ссылка |
Churchill, R. C., Kummer, M. and Rod, D. L. 1983. On averaging, reduction and symmetry in Hamiltonian systems. Journal of Differential Equations, 49: 359–373. |
Библиографическая ссылка |
Clune, T. and Knobloch, E. 1994. Pattern selection in three-dimensional magnetoconvection. Physica D, 74: 151–176. |
Библиографическая ссылка |
Cushman, R. and Rod, D. 1982. Reduction of the semisimple 1:1 resonance. Physica D, 6: 105–112. |
Библиографическая ссылка |
David, D. and Holm, D. D. 1992. Multiple Lie-Poisson structures, reductions, and geometric phases for the Maxwell-Bloch travelling wave equations. Journal of Nonlinear Science, 2: 241–262. |
Библиографическая ссылка |
David, D., Holm, D. D. and Tramick, M. 1990. Hamiltonian chaos in nonlinear optical polarization dynamics. Physics Reports, 187: 281–370. |
Библиографическая ссылка |
Feng, Q., Moloney, J. V. and Newell, A. C. 1994. Transverse patterns in lasers. Physical Review A, 50: 3601–3604. |
Библиографическая ссылка |
Field, M. 1996. “Symmetry breaking for compact Lie groups”. In Memoirs of the american mathematical society, Vol. 120, Providence, RI: American Mathematical Society. No 574 |
Библиографическая ссылка |
Field, M. and Swift, J. W. 1994. Hopf bifurcation and Hopf fibration. Nonlinearity, 7(574): 385–402. |
Библиографическая ссылка |
Van Gils, S. A. and Silber, M. 1995. On the uniqueness of invariant tori in D<sub>4</sub>×S<sup>1</sup> symmetric systems. Nonlinearity, 8(574): 615–628. |
Библиографическая ссылка |
Golubitsky, M. and Stewart, I. 1987. Generic bifurcation of Hamiltonian systems with symmetry. Physica D, 24(574): 391–405. |
Библиографическая ссылка |
Golubitsky, M., Stewart, I. and Schaeffer, D. 1988. “Singularities and Groups in Bifurcation Theory”. In Applied Mathematical Sciences 69, Vol. 2, New York: Springer. |
Библиографическая ссылка |
Haller, G. and Wiggins, S. 1993. Orbits homoclinic to resonances: the Hamiltonian case. Physica D, 66: 293–346. |
Библиографическая ссылка |
Haller, G. and Wiggins, S. 1996. Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems. Physica D, 90: 319–365. |
Библиографическая ссылка |
Kato, T. 1984. Perturbation Theory for Linear Operators, New York: Springer. |
Библиографическая ссылка |
Knobloch, E. and Silber, M. 1992. “International Series of Numerical Mathematics”. In Bifurcation and Symmetry, Edited by: Allgower, E., Böhmer, K. and Golubitsky, M. Vol. 104, 241–252. Basel: Birkhäuser. |
Библиографическая ссылка |
Knobloch, E., Mahalov, A. and Marsden, J. E. 1994. Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics. Physica D, 73: 49–81. |
Библиографическая ссылка |
Kummer, M. 1986. “On resonant Hamiltonian systems with finitely many degrees of freedom”. In Local and Global Methods of Nonlinear Dynamics, Edited by: Sáenz, A. W., Zachary, W. W. and Cawley, R. Vol. 252, 19–31. New York: Springer. Lecture Notes in Physics |
Библиографическая ссылка |
Kummer, M. 1990. On resonant classical Hamiltonians with n frequencies. Journal of Differential Equations, 83: 220–243. |
Библиографическая ссылка |
Lewis, D. and Marsden, J. E. The Hamiltonian-dissipative decomposition of normal forms of vector fields. Proceedings of the Conference on Bifurcation Theory and its Numerical Analysis. pp.51–78. Xi'an Jaitong University Press. |
Библиографическая ссылка |
Marsden, J. E. 1987. Appendix to Golubitsky and Stewart, (1987) |
Библиографическая ссылка |
Marsden, J. E. 1992. Lectures on Mechanics, Cambridge: Cambridge University Press. London Mathematical Society Lecture Note Series |
Библиографическая ссылка |
Marsden, J. E. and Ratiu, T. S. 1994. Symmetry and Mechanics, Vol. 17, New York: Springer. Texts in Applied Mathematics |
Библиографическая ссылка |
MacKay, R. 1991. Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Physical Letters A, 155: 266–268. |
Библиографическая ссылка |
Rumberger, M. and Scheurle, J. 1996. Invariant C<sup>j</sup> functions and center manifold reduction. Progress in Nonlinear Differential Equations and Applications, 19: 145–153. |
Библиографическая ссылка |
Silber, M. and Knobloch, E. 1991. Hopf bifurcation on a square lattice. Nonlinearity, 4: 1063–1107. |
Библиографическая ссылка |
Silber, M., Riecke, H. and Kramer, L. 1992. Symmetry-breaking Hopf bifurcation in anisotropic systems. Physica D, 61: 260–278. |
Библиографическая ссылка |
Swift, J. W. 1988. Hopf bifurcation with the symmetry of the square. Nonlinearity, 1: 333–377. |