Автор |
Lee, H.S. |
Автор |
Chang, R.C. |
Дата выпуска |
1992 |
dc.description |
We consider the following problem: Find a set of parallel straight lines with equal spacing to hit all m grid points in a closed region bounded by a convex polygon P with n vertices such that size of this set is minimal. We use continued fraction expansions to explore the combinatorial properties of this problem and propose an O{n + log m)approximation algorithm which guarantees finite performance ratio. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Approximation algorithm |
Тема |
continued fraction expansionshitting set problem |
Тема |
number theory |
Тема |
F.2.2 |
Тема |
G.2.1 |
Название |
covering grid points in a convex polygon with straight lines |
Тип |
research-article |
DOI |
10.1080/00207169208804057 |
Electronic ISSN |
1029-0265 |
Print ISSN |
0020-7160 |
Журнал |
International Journal of Computer Mathematics |
Том |
42 |
Первая страница |
137 |
Последняя страница |
156 |
Аффилиация |
Lee, H.S.; Institute of Computer Science and Information Engineering, National Chiao Tung University |
Аффилиация |
Chang, R.C.; Institute of Computer and Information Science, National Chiao Tung University |
Выпуск |
3-4 |
Библиографическая ссылка |
Garey, M.R. and Johnson, D.S. 1979. “Computers and Intractability”. In A Guide to the Theory of NP- Completeness, San Francisco, California: Fremman. |
Библиографическая ссылка |
Greene, D.H. and Yao, F.F. Finite-resolution computational geometry. Proc. 27th Symposium on Foundations of Computer Science. pp.143–152. |
Библиографическая ссылка |
Hassin, R. and Megiddo, N. 1991. Approximation algorithms for hitting objects with straight lines. Discrete Applied Mathematics, 30(1): 29–24. |
Библиографическая ссылка |
Knuth, D.E. 1981. The Art of Computer Programming, Addison-Wesley. second edition |
Библиографическая ссылка |
Lee, H.S. and Chang, R.C. 1991. Weber problem on a grid Techn. Rep., Dept. of Comp. Science and Info. Engineering, NCTU |
Библиографическая ссылка |
LeVeque, W.J. 1977. Fundamentals of Number Theory, Addison-Wesley. |
Библиографическая ссылка |
Lovasz, L. 1986. “Society for Industrial and Applied Mathematics”. In An Algorithmic Theory of Numbers, Graphs and Complexity Pennsylvania |
Библиографическая ссылка |
Mehta, S., Mukherjeel, M. and Nagy, G. Constrained integer approximation to 2-D line intersections. Second Canadian Conf on Computational Geometry. August. pp.302–305. Canada |
Библиографическая ссылка |
Overmars, M.H. 1988. “Computational geometry on a grid: an overview”. In Theoretical Foundations for Computer Graphics and CAD, 167–184. Berlin: Springer-Verlag. |
Библиографическая ссылка |
Preparata, F.P. and Shamos, M.I. 1985. Computational Geometry:An Introduction, New York: Springer-Verlag. |