Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Lee, H.S.
Автор Chang, R.C.
Дата выпуска 1992
dc.description We consider the following problem: Find a set of parallel straight lines with equal spacing to hit all m grid points in a closed region bounded by a convex polygon P with n vertices such that size of this set is minimal. We use continued fraction expansions to explore the combinatorial properties of this problem and propose an O{n + log m)approximation algorithm which guarantees finite performance ratio.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Approximation algorithm
Тема continued fraction expansionshitting set problem
Тема number theory
Тема F.2.2
Тема G.2.1
Название covering grid points in a convex polygon with straight lines
Тип research-article
DOI 10.1080/00207169208804057
Electronic ISSN 1029-0265
Print ISSN 0020-7160
Журнал International Journal of Computer Mathematics
Том 42
Первая страница 137
Последняя страница 156
Аффилиация Lee, H.S.; Institute of Computer Science and Information Engineering, National Chiao Tung University
Аффилиация Chang, R.C.; Institute of Computer and Information Science, National Chiao Tung University
Выпуск 3-4
Библиографическая ссылка Garey, M.R. and Johnson, D.S. 1979. “Computers and Intractability”. In A Guide to the Theory of NP- Completeness, San Francisco, California: Fremman.
Библиографическая ссылка Greene, D.H. and Yao, F.F. Finite-resolution computational geometry. Proc. 27th Symposium on Foundations of Computer Science. pp.143–152.
Библиографическая ссылка Hassin, R. and Megiddo, N. 1991. Approximation algorithms for hitting objects with straight lines. Discrete Applied Mathematics, 30(1): 29–24.
Библиографическая ссылка Knuth, D.E. 1981. The Art of Computer Programming, Addison-Wesley. second edition
Библиографическая ссылка Lee, H.S. and Chang, R.C. 1991. Weber problem on a grid Techn. Rep., Dept. of Comp. Science and Info. Engineering, NCTU
Библиографическая ссылка LeVeque, W.J. 1977. Fundamentals of Number Theory, Addison-Wesley.
Библиографическая ссылка Lovasz, L. 1986. “Society for Industrial and Applied Mathematics”. In An Algorithmic Theory of Numbers, Graphs and Complexity Pennsylvania
Библиографическая ссылка Mehta, S., Mukherjeel, M. and Nagy, G. Constrained integer approximation to 2-D line intersections. Second Canadian Conf on Computational Geometry. August. pp.302–305. Canada
Библиографическая ссылка Overmars, M.H. 1988. “Computational geometry on a grid: an overview”. In Theoretical Foundations for Computer Graphics and CAD, 167–184. Berlin: Springer-Verlag.
Библиографическая ссылка Preparata, F.P. and Shamos, M.I. 1985. Computational Geometry:An Introduction, New York: Springer-Verlag.

Скрыть метаданые