Автор |
Cima, J. A. |
Автор |
Derrick, W. R. |
Дата выпуска |
1993 |
dc.description |
We prove that positive solutions of the nonlinear Dirichlet problem where Ω is a ball or an annulus in and is a polynomial with nonnegative coefficients, have alternating power series representations at the origin. We also obtain several existence and nonuniqueness results for certain functions of the form with the critical exponent, where We give lower bounds for R in terms of the initial value u(0), where R is the radius of the ball Ω, an upper bound for u(r) for all 0<r<R, and an upper bound for|′(R)|. We also give several results for multiple solutions of this problem, showing that two such solutions must cross in (0,R), and give lower bounds for R in terms of the value of the crossover in this situation, as well as a nonexistence result. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
35J55 |
Тема |
35J60 |
Название |
Positive solutions of a nonlinear elliptic equation |
Тип |
research-article |
DOI |
10.1080/17476939308814627 |
Electronic ISSN |
1563-5066 |
Print ISSN |
0278-1077 |
Журнал |
Complex Variables, Theory and Application: An International Journal |
Том |
21 |
Первая страница |
179 |
Последняя страница |
187 |
Аффилиация |
Cima, J. A.; Department of Mathematics, University of North Carolina |
Аффилиация |
Derrick, W. R.; Department of Mathematics, University of Montana |
Выпуск |
3-4 |
Библиографическая ссылка |
Atkinson, F. V. and Peletier, L. A. 1988. Large solutions of elliptic equations involving critical exponents. Asymptotic Analysis, 1: 139–160. |
Библиографическая ссылка |
Brezis, H. and Nirenberg, L. 1983. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Comm. Pure Appl. Math., 36: 437–477. |
Библиографическая ссылка |
Coffman, C. V. 1972. Uniqueness of the ground state solution for ▵u - u + u <sup>3</sup> = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal., 46: 81–95. |
Библиографическая ссылка |
Gidas, B., Ni, W. M. and Nirenberg, L. 1979. Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68: 209–243. |
Библиографическая ссылка |
Gidas, B., Ni, W. M. and Nirenberg, L. 1981. Symmetry of positive solutions of nonlinear elliptic equations in . Math. Anal. Appl. Adv. in Math. Suppl. Stud., 7A: 369–402. |
Библиографическая ссылка |
Hartman, P. 1964. Ordinary Differential Equations, J., New York: Wiley and Sons. |
Библиографическая ссылка |
Jones, C. K. R. T. 1988. Radial solutions of a semilinear elliptic equation at a critical exponent. Arch. Rational Mech. Anal., 104: 251–270. |
Библиографическая ссылка |
Kwong, M. K. 1989. Uniqueness of positive solutions of . Arch. Rational Mech. Anal., 105: 243–266. |
Библиографическая ссылка |
Lions, P. L. 1982. On the existence of positive solutions of semilinear elliptic equations. SIAM Reviews, 24: 441–467. |
Библиографическая ссылка |
McLeod, K. and Serrin, J. 1981. Uniqueness of solutions of semilinear Poisson equations. Proc. Natl. Acad. Sci. USA, 78: 6592–6595. |
Библиографическая ссылка |
Ni, W. M. 1983. Uniqueness of solutions of nonlinear Dirichlet problems. J. Differential Equations, 50: 289–304. |
Библиографическая ссылка |
Payne, L. E. 1988. “Some special maximum principles with applications to isoperimetric inequalities”. In Maximum Principles and Eigenvalue Problems in Partial Differential Equations, New York: John Wiley & Sons. |
Библиографическая ссылка |
Peletier, L. A. and Serrin, J. 1983. Uniqueness of positive solutions of semilinear equations in . Arch. Rational Mech. Anal, 81: 181–197. |
Библиографическая ссылка |
Peletier, L. A. and Serrin, J. 1986. Uniqueness of positive solutions of semilinear equations in [ILM00010]. J. Differential Equations, 61: 380–397. |
Библиографическая ссылка |
Pohozaev, S. I. 1965. Eigenfunctions of the equation ▵u + λf(u) = 0. Soviet Math. Doklady, 6,165: 1408,33–1411,36. (translated from the Russian Dokl. 1965 Akad. Nauk SSSR |
Библиографическая ссылка |
Zhang, D. 1989. On multiple solutions of . Nonlinear Analysis, 13: 353–372. |