Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Cima, J. A.
Автор Derrick, W. R.
Дата выпуска 1993
dc.description We prove that positive solutions of the nonlinear Dirichlet problem where Ω is a ball or an annulus in and is a polynomial with nonnegative coefficients, have alternating power series representations at the origin. We also obtain several existence and nonuniqueness results for certain functions of the form with the critical exponent, where We give lower bounds for R in terms of the initial value u(0), where R is the radius of the ball Ω, an upper bound for u(r) for all 0<r<R, and an upper bound for|′(R)|. We also give several results for multiple solutions of this problem, showing that two such solutions must cross in (0,R), and give lower bounds for R in terms of the value of the crossover in this situation, as well as a nonexistence result.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема 35J55
Тема 35J60
Название Positive solutions of a nonlinear elliptic equation
Тип research-article
DOI 10.1080/17476939308814627
Electronic ISSN 1563-5066
Print ISSN 0278-1077
Журнал Complex Variables, Theory and Application: An International Journal
Том 21
Первая страница 179
Последняя страница 187
Аффилиация Cima, J. A.; Department of Mathematics, University of North Carolina
Аффилиация Derrick, W. R.; Department of Mathematics, University of Montana
Выпуск 3-4
Библиографическая ссылка Atkinson, F. V. and Peletier, L. A. 1988. Large solutions of elliptic equations involving critical exponents. Asymptotic Analysis, 1: 139–160.
Библиографическая ссылка Brezis, H. and Nirenberg, L. 1983. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Comm. Pure Appl. Math., 36: 437–477.
Библиографическая ссылка Coffman, C. V. 1972. Uniqueness of the ground state solution for ▵u - u + u <sup>3</sup> = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal., 46: 81–95.
Библиографическая ссылка Gidas, B., Ni, W. M. and Nirenberg, L. 1979. Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68: 209–243.
Библиографическая ссылка Gidas, B., Ni, W. M. and Nirenberg, L. 1981. Symmetry of positive solutions of nonlinear elliptic equations in . Math. Anal. Appl. Adv. in Math. Suppl. Stud., 7A: 369–402.
Библиографическая ссылка Hartman, P. 1964. Ordinary Differential Equations, J., New York: Wiley and Sons.
Библиографическая ссылка Jones, C. K. R. T. 1988. Radial solutions of a semilinear elliptic equation at a critical exponent. Arch. Rational Mech. Anal., 104: 251–270.
Библиографическая ссылка Kwong, M. K. 1989. Uniqueness of positive solutions of . Arch. Rational Mech. Anal., 105: 243–266.
Библиографическая ссылка Lions, P. L. 1982. On the existence of positive solutions of semilinear elliptic equations. SIAM Reviews, 24: 441–467.
Библиографическая ссылка McLeod, K. and Serrin, J. 1981. Uniqueness of solutions of semilinear Poisson equations. Proc. Natl. Acad. Sci. USA, 78: 6592–6595.
Библиографическая ссылка Ni, W. M. 1983. Uniqueness of solutions of nonlinear Dirichlet problems. J. Differential Equations, 50: 289–304.
Библиографическая ссылка Payne, L. E. 1988. “Some special maximum principles with applications to isoperimetric inequalities”. In Maximum Principles and Eigenvalue Problems in Partial Differential Equations, New York: John Wiley & Sons.
Библиографическая ссылка Peletier, L. A. and Serrin, J. 1983. Uniqueness of positive solutions of semilinear equations in . Arch. Rational Mech. Anal, 81: 181–197.
Библиографическая ссылка Peletier, L. A. and Serrin, J. 1986. Uniqueness of positive solutions of semilinear equations in [ILM00010]. J. Differential Equations, 61: 380–397.
Библиографическая ссылка Pohozaev, S. I. 1965. Eigenfunctions of the equation ▵u + λf(u) = 0. Soviet Math. Doklady, 6,165: 1408,33–1411,36. (translated from the Russian Dokl. 1965 Akad. Nauk SSSR
Библиографическая ссылка Zhang, D. 1989. On multiple solutions of . Nonlinear Analysis, 13: 353–372.

Скрыть метаданые