Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор PINTO, MANUEL
Дата выпуска 2003
dc.description Dedicated to Allan Peterson on the occasion of his 60th birthday.For difference systems, the new concept expo-(h,k) dichotomy is introduced and exhaustively studied for being used in the asymptotic equivalence of null solutions. An application to Poincaré equations is shown.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема Expo-(h,k) dichotomy
Тема Asymptotic equivalence
Тема Theorems of Poincaré type
Тема Green's operator
Тема 39A11
Тема 39A10
Название Null Solutions of Difference Systems Under Vanishing Perturbation
Тип research-article
DOI 10.1080/10236100309487531
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 9
Первая страница 1
Последняя страница 13
Аффилиация PINTO, MANUEL; Departamento de Matemáticas, Facultad de Ciencias Universidad de Chile
Выпуск 1
Библиографическая ссылка Agarwal, R. 1992. Difference Equations and Inequalities New York: Marcel Dekker.
Библиографическая ссылка Aulbach, B. 1984. Continuous and Discrete Dynamics near Manifolds of Equilibria, Lecture Notes in Mathematics 1058 Berlin: Springer.
Библиографическая ссылка Benzaid, Z. and Lutz, D. 1987. Asymptotic representation of solutions of perturbed systems of linear difference equations. Studies Appl. Math., 77: 195–221.
Библиографическая ссылка Bohner, M. and Peterson, A. 2001. Dynamic Equations on Time Scales: An Introduction with Applications Boston: Birkhäuser.
Библиографическая ссылка Castillo, S. and Pinto, M. 2002. “Levinson's Theorem in Functional Dynamics Equations in Time Scale”. In Proceedings of 4th International Conference of Differential Equations and Applications 2001 Reading: Gordon and Breach.
Библиографическая ссылка Castillo, S. and Pinto, M. 1998. Asymptotic summation for second order finite difference systems. J. Comp. Math., 35(4): 117–129.
Библиографическая ссылка Castillo, S. and Pinto, M. 2000. “Improvements for asymptotic results in functional difference equations”. In Proc. 5th ICDEA
Библиографическая ссылка Castillo, S. and Pinto, M. 1997. “Asymptotic formulae for solutions of delay-difference systems”. In Advances in Difference Equations, Proceedings of the Second International Conference on Difference Equations Veszprém 1995 Edited by: Elaydi, S., Györi, I. and Ladas, G. 107–117. Amsterdam: Gordon and Breach Publishers.
Библиографическая ссылка Castillo, S. and Pinto, M. 2001. Asymptotic formulae for nonlinear functional difference equations. Comp. Math. Appl., 42: 551–559.
Библиографическая ссылка Coffman, C. V. 1964. Asymptotic behavior of solutions of ordinary difference equations. Trans. Amer. Math. Soc., 110: 22–51.
Библиографическая ссылка Coffman, C. V. and Schäffer, J. J. 1967. “Dichotomies for linear difference equations”. In Math. Ann. 139–167.
Библиографическая ссылка Coppel, W. A. 1978. Dichotomies in Stability Theory, Lecture Notes in Math. 629 Berlin: Springer.
Библиографическая ссылка Cuevas, C. and Pinto, M. 2000. Asymptotic behavior of solutions of Volterra difference systems. J. Comp. Appl. Math., 113: 217–225.
Библиографическая ссылка Cuevas, C. and Pinto, M. 2001. Asymptotic properties of solutions of nonautonomous Volterra difference systems with infinite delay. Comp. Appl. Math., 42: 671–685.
Библиографическая ссылка Eastham, M. S. P. 1989. The Asymptotic Solution of Linear Differential Systems (Applications of the Levinson's Theorem Oxford: Clarendon Press.
Библиографическая ссылка Elaydi, S. 1999. An Introduction to Difference Equations, , 2nd Ed. New York: Springer.
Библиографическая ссылка Elaydi, S., Papaschinopoulos, G. and Shinas, J. 1997. “Asymptotic theory for non invertible systems”. In Proceedings of 2nd International Conference of Differential Systems and Applications, Veszprém 1995 107–117. Gorden and Breach.
Библиографическая ссылка Kelley, W. and Peterson, A. 1991. Difference Equations: An Introduction with Applications New York: Academic Press.
Библиографическая ссылка Levinson, N. 1948. The asymptotic nature of solutions of linear differential equations. Duke Math. J., 15: 111–126.
Библиографическая ссылка López, J. and Pinto, M. 1997. (h,k) Trichotomies and asymptotics of nonautonomous difference systems. J. Comp. Math., 33(10): 105–124.
Библиографическая ссылка López, J. and Pinto, M. 1999. “Existence and uniqueness of bounded solutions for a class of difference systems with dichotomies of summable type”. In New Developments in Difference Equations and Applications (Taipei 1997 183–188. Amsterdam: Gorden and Breach.
Библиографическая ссылка Massera, J. L. and Schäffer, J. J. 1966. Linear Differential Equations and Functional Spaces New York: Academic Press.
Библиографическая ссылка Mate, A. and Nevai, P. 1990. A generalization of Poincaré's theorem for recurrence equations. J. Approx. Theory, 63: 92–97.
Библиографическая ссылка Medina, R. and Pinto, M. 1992. Asymptotic representation of solutions of linear second order difference equations. J. Math. Anal. Appl., 165(2): 505–515.
Библиографическая ссылка Medina, R. and Pinto, M. 1996. Asymptotic constancy of solutions of systems of difference equations. Int. J. Math. Math. Sci., 19(2): 343–350.
Библиографическая ссылка Medina, R. and Pinto, M. 1997. Variationally stable difference equations. Proc. 2nd. World Cong. Nonlinear Anal., Athens 1996. Nonlinear Anal., 30(2): 1141–1152.
Библиографическая ссылка Medina, R. and Pinto, M. 1996. Asymptotic representation of solutions of ordinary difference systems. Appl. Anal., 61(1–2): 31–44.
Библиографическая ссылка Naulún, R. and Pinto, M. 1995. Roughness of (h,k) dichotomies. J. Diff. Eqs, 118(1): 20–35.
Библиографическая ссылка Naulún, R. and Pinto, M. Asymptotic behavior of second order Poincaré difference equations in preparation
Библиографическая ссылка Naulún, R. and Pinto, M. 1996. “Reduction principle for difference systems”. In Proceedings of International Confererence on Difference Equations San Antonio, USA 379–387. Amsterdam: Gordon and Breach Publishers.
Библиографическая ссылка Naulún, R. and Pinto, M. 1997. Stability of discrete dichotomies for linear difference systems. J. Diff. Eqs Appl., 3(2): 101–123.
Библиографическая ссылка Palmer, K. 1988. Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dyn. Rep., 1: 265–306.
Библиографическая ссылка Perron, O. 1909. Über einen Satz des Herrn Poincaré. J. Reine Angew. Math., 136: 17–37.
Библиографическая ссылка Pinto, M. 1994. Discrete dichotomies, advances in difference equation I. Comput. Math. Appl., 28(1–3): 259–270.
Библиографическая ссылка Pinto, M. 1998. Weighted-bounded and convergent solutions. Adv. Diff. Eqn II, Comput. Math. Appl., 36: 391–400.
Библиографическая ссылка Pinto, M. 1988. Asymptotic integration of systems resulting from the perturbations of an h-system. J. Math. Anal. Appl., 131: 194–216.
Библиографическая ссылка Pinto, M. 1990. Variationally stable differential systems. J. Math. Anal. Appl., 151: 254–260.
Библиографическая ссылка Pinto, M. 1992, 1993. Proceedings of the First World Congress of Nonlinear Analysts Tampa Edited by: Lakshmikantham, V. and de Gruyter, W. Dichotomies for differential systems with impulse effect, In: eds
Библиографическая ссылка Pinto, M. 1994. About the conditional stability of the piecewise continuous solutions of differential equations. Diff. Eqs Dyn. Syst., 2(3): 217–230.
Библиографическая ссылка Pinto, M. 2001. Asymptotic behavior of systems of Poincaré type Fac Ciencias, U. Chile, UNAP, U. Búo-Búo, UFRO.
Библиографическая ссылка Pinto, M. 1995. Asymptotic equivalence of difference systems. J. Diff. Eqs Appl., 1: 249–262.
Библиографическая ссылка Pinto, M. 1996. Asymptotic equivalence of differential systems with impulse effect. Dyn. Cont., Discrete Impulsive Syst., 2(2): 205–218.
Библиографическая ссылка Pinto, M. A generalization to Poincaré's theorem for recurrent systems, to appear
Библиографическая ссылка H., Poincaré. 1885. Sur les equations linéaires aux différentielles et aux différences finites. Am. J. Math., 7: 203–258.
Библиографическая ссылка Schinas, J. 1974. Stability and conditional stability of time-difference equations in Banach spaces. J. Inst. Math. Appl., 14: 335–346.

Скрыть метаданые