Автор |
PINTO, MANUEL |
Дата выпуска |
2003 |
dc.description |
Dedicated to Allan Peterson on the occasion of his 60th birthday.For difference systems, the new concept expo-(h,k) dichotomy is introduced and exhaustively studied for being used in the asymptotic equivalence of null solutions. An application to Poincaré equations is shown. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Expo-(h,k) dichotomy |
Тема |
Asymptotic equivalence |
Тема |
Theorems of Poincaré type |
Тема |
Green's operator |
Тема |
39A11 |
Тема |
39A10 |
Название |
Null Solutions of Difference Systems Under Vanishing Perturbation |
Тип |
research-article |
DOI |
10.1080/10236100309487531 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
9 |
Первая страница |
1 |
Последняя страница |
13 |
Аффилиация |
PINTO, MANUEL; Departamento de Matemáticas, Facultad de Ciencias Universidad de Chile |
Выпуск |
1 |
Библиографическая ссылка |
Agarwal, R. 1992. Difference Equations and Inequalities New York: Marcel Dekker. |
Библиографическая ссылка |
Aulbach, B. 1984. Continuous and Discrete Dynamics near Manifolds of Equilibria, Lecture Notes in Mathematics 1058 Berlin: Springer. |
Библиографическая ссылка |
Benzaid, Z. and Lutz, D. 1987. Asymptotic representation of solutions of perturbed systems of linear difference equations. Studies Appl. Math., 77: 195–221. |
Библиографическая ссылка |
Bohner, M. and Peterson, A. 2001. Dynamic Equations on Time Scales: An Introduction with Applications Boston: Birkhäuser. |
Библиографическая ссылка |
Castillo, S. and Pinto, M. 2002. “Levinson's Theorem in Functional Dynamics Equations in Time Scale”. In Proceedings of 4th International Conference of Differential Equations and Applications 2001 Reading: Gordon and Breach. |
Библиографическая ссылка |
Castillo, S. and Pinto, M. 1998. Asymptotic summation for second order finite difference systems. J. Comp. Math., 35(4): 117–129. |
Библиографическая ссылка |
Castillo, S. and Pinto, M. 2000. “Improvements for asymptotic results in functional difference equations”. In Proc. 5th ICDEA |
Библиографическая ссылка |
Castillo, S. and Pinto, M. 1997. “Asymptotic formulae for solutions of delay-difference systems”. In Advances in Difference Equations, Proceedings of the Second International Conference on Difference Equations Veszprém 1995 Edited by: Elaydi, S., Györi, I. and Ladas, G. 107–117. Amsterdam: Gordon and Breach Publishers. |
Библиографическая ссылка |
Castillo, S. and Pinto, M. 2001. Asymptotic formulae for nonlinear functional difference equations. Comp. Math. Appl., 42: 551–559. |
Библиографическая ссылка |
Coffman, C. V. 1964. Asymptotic behavior of solutions of ordinary difference equations. Trans. Amer. Math. Soc., 110: 22–51. |
Библиографическая ссылка |
Coffman, C. V. and Schäffer, J. J. 1967. “Dichotomies for linear difference equations”. In Math. Ann. 139–167. |
Библиографическая ссылка |
Coppel, W. A. 1978. Dichotomies in Stability Theory, Lecture Notes in Math. 629 Berlin: Springer. |
Библиографическая ссылка |
Cuevas, C. and Pinto, M. 2000. Asymptotic behavior of solutions of Volterra difference systems. J. Comp. Appl. Math., 113: 217–225. |
Библиографическая ссылка |
Cuevas, C. and Pinto, M. 2001. Asymptotic properties of solutions of nonautonomous Volterra difference systems with infinite delay. Comp. Appl. Math., 42: 671–685. |
Библиографическая ссылка |
Eastham, M. S. P. 1989. The Asymptotic Solution of Linear Differential Systems (Applications of the Levinson's Theorem Oxford: Clarendon Press. |
Библиографическая ссылка |
Elaydi, S. 1999. An Introduction to Difference Equations, , 2nd Ed. New York: Springer. |
Библиографическая ссылка |
Elaydi, S., Papaschinopoulos, G. and Shinas, J. 1997. “Asymptotic theory for non invertible systems”. In Proceedings of 2nd International Conference of Differential Systems and Applications, Veszprém 1995 107–117. Gorden and Breach. |
Библиографическая ссылка |
Kelley, W. and Peterson, A. 1991. Difference Equations: An Introduction with Applications New York: Academic Press. |
Библиографическая ссылка |
Levinson, N. 1948. The asymptotic nature of solutions of linear differential equations. Duke Math. J., 15: 111–126. |
Библиографическая ссылка |
López, J. and Pinto, M. 1997. (h,k) Trichotomies and asymptotics of nonautonomous difference systems. J. Comp. Math., 33(10): 105–124. |
Библиографическая ссылка |
López, J. and Pinto, M. 1999. “Existence and uniqueness of bounded solutions for a class of difference systems with dichotomies of summable type”. In New Developments in Difference Equations and Applications (Taipei 1997 183–188. Amsterdam: Gorden and Breach. |
Библиографическая ссылка |
Massera, J. L. and Schäffer, J. J. 1966. Linear Differential Equations and Functional Spaces New York: Academic Press. |
Библиографическая ссылка |
Mate, A. and Nevai, P. 1990. A generalization of Poincaré's theorem for recurrence equations. J. Approx. Theory, 63: 92–97. |
Библиографическая ссылка |
Medina, R. and Pinto, M. 1992. Asymptotic representation of solutions of linear second order difference equations. J. Math. Anal. Appl., 165(2): 505–515. |
Библиографическая ссылка |
Medina, R. and Pinto, M. 1996. Asymptotic constancy of solutions of systems of difference equations. Int. J. Math. Math. Sci., 19(2): 343–350. |
Библиографическая ссылка |
Medina, R. and Pinto, M. 1997. Variationally stable difference equations. Proc. 2nd. World Cong. Nonlinear Anal., Athens 1996. Nonlinear Anal., 30(2): 1141–1152. |
Библиографическая ссылка |
Medina, R. and Pinto, M. 1996. Asymptotic representation of solutions of ordinary difference systems. Appl. Anal., 61(1–2): 31–44. |
Библиографическая ссылка |
Naulún, R. and Pinto, M. 1995. Roughness of (h,k) dichotomies. J. Diff. Eqs, 118(1): 20–35. |
Библиографическая ссылка |
Naulún, R. and Pinto, M. Asymptotic behavior of second order Poincaré difference equations in preparation |
Библиографическая ссылка |
Naulún, R. and Pinto, M. 1996. “Reduction principle for difference systems”. In Proceedings of International Confererence on Difference Equations San Antonio, USA 379–387. Amsterdam: Gordon and Breach Publishers. |
Библиографическая ссылка |
Naulún, R. and Pinto, M. 1997. Stability of discrete dichotomies for linear difference systems. J. Diff. Eqs Appl., 3(2): 101–123. |
Библиографическая ссылка |
Palmer, K. 1988. Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dyn. Rep., 1: 265–306. |
Библиографическая ссылка |
Perron, O. 1909. Über einen Satz des Herrn Poincaré. J. Reine Angew. Math., 136: 17–37. |
Библиографическая ссылка |
Pinto, M. 1994. Discrete dichotomies, advances in difference equation I. Comput. Math. Appl., 28(1–3): 259–270. |
Библиографическая ссылка |
Pinto, M. 1998. Weighted-bounded and convergent solutions. Adv. Diff. Eqn II, Comput. Math. Appl., 36: 391–400. |
Библиографическая ссылка |
Pinto, M. 1988. Asymptotic integration of systems resulting from the perturbations of an h-system. J. Math. Anal. Appl., 131: 194–216. |
Библиографическая ссылка |
Pinto, M. 1990. Variationally stable differential systems. J. Math. Anal. Appl., 151: 254–260. |
Библиографическая ссылка |
Pinto, M. 1992, 1993. Proceedings of the First World Congress of Nonlinear Analysts Tampa Edited by: Lakshmikantham, V. and de Gruyter, W. Dichotomies for differential systems with impulse effect, In: eds |
Библиографическая ссылка |
Pinto, M. 1994. About the conditional stability of the piecewise continuous solutions of differential equations. Diff. Eqs Dyn. Syst., 2(3): 217–230. |
Библиографическая ссылка |
Pinto, M. 2001. Asymptotic behavior of systems of Poincaré type Fac Ciencias, U. Chile, UNAP, U. Búo-Búo, UFRO. |
Библиографическая ссылка |
Pinto, M. 1995. Asymptotic equivalence of difference systems. J. Diff. Eqs Appl., 1: 249–262. |
Библиографическая ссылка |
Pinto, M. 1996. Asymptotic equivalence of differential systems with impulse effect. Dyn. Cont., Discrete Impulsive Syst., 2(2): 205–218. |
Библиографическая ссылка |
Pinto, M. A generalization to Poincaré's theorem for recurrent systems, to appear |
Библиографическая ссылка |
H., Poincaré. 1885. Sur les equations linéaires aux différentielles et aux différences finites. Am. J. Math., 7: 203–258. |
Библиографическая ссылка |
Schinas, J. 1974. Stability and conditional stability of time-difference equations in Banach spaces. J. Inst. Math. Appl., 14: 335–346. |