Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Krause, Ulrich
Автор Pituk, Mihály
Дата выпуска 2004
dc.description Sufficient conditions are given under which the higher order difference equation x <sub> n+1</sub>= f(x <sub>n</sub>,x<sub> n-1</sub>,...,x<sub>n-k</sub> ), n=0,1,2,... generates an order preserving discrete dynamical system with respect to the discrete exponential ordering. It is shown that under the above monotonicity assumption the boundedness of all solutions as well as the local and global stability of an equilibrium hold if and only if they hold for the much simpler first order equation x <sub> n+1</sub>=h(x <sub>n</sub> ), where h(x)=f(x,x,…,x). As an application, a second order nonlinear difference equation from macroeconomics and a discrete analogue of a model of haematopoiesis are discussed.
Формат application.pdf
Издатель Gordon and BreachReading, UK
Копирайт Copyright Taylor and Francis Group, LLC
Тема Higher order difference equations
Тема Order preserving map
Тема Discrete exponential ordering
Тема Boundedness
Тема Local stability
Тема Global asymptotic stability
Тема 39A10
Тема 39A11
Тема 39A12
Название Boundedness and Stability for Higher Order Difference Equations<sup>*</sup>
Тип research-article
DOI 10.1080/1023619031000115377
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 10
Первая страница 343
Последняя страница 356
Аффилиация Krause, Ulrich; Fachbereich Mathematik und Informatik, Universität Bremen
Аффилиация Pituk, Mihály; Department of Mathematics and Computing, University of Veszprém
Выпуск 4
Библиографическая ссылка Dancer, EN and Hess, P. 1991. Stability of fixed points for order-preserving discrete-time dynamical systems. J. Reine Angew. Math., 419: 125–139.
Библиографическая ссылка Fisher, ME. 1984. Stability of a class of delay-difference equations. Nonlinear Anal. T.M.A., 8: 645–654.
Библиографическая ссылка Györi, I, Ladas, G and Vlahos, PN. 1991. Global attractivity in a delay difference equation. Nonlinear Anal. T.M.A., 17: 473–479.
Библиографическая ссылка Karakostas, G, Philos, Ch. G and Sficas, YG. 1991. The dynamics of some discrete population models. Nonlinear Anal. T.M.A., 17: 1069–1084.
Библиографическая ссылка Kloeden, PE and Rubinov, AM. 2002. Attracting sets for increasing co-radiant and topical operators. Math. Nachr., 243: 134–145.
Библиографическая ссылка Kocic, VL and Ladas, G. 1992. Global attractivity in nonlinear delay-difference equations. Proc. Am. Math. Soc., 115: 1083–1088.
Библиографическая ссылка Krause, U. 1995. Stability trichotomy, path stability, and relative stability for positive nonlinear difference equations of higher order. J. Difference Equations Appl., 1: 323–346.
Библиографическая ссылка Poláčik, P and Tereščák, I. 1991. Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems. Arch. Rat. Mech. Anal., 116: 339–360.
Библиографическая ссылка Sedaghat, H. 1997. A class of nonlinear second order difference equations from macroeconomics. Nonlinear Anal. T.M.A., 29: 593–603.
Библиографическая ссылка Smith, HL. 1998. Planar competitive and cooperative difference equations. J. Difference Equations Appl., 3: 335–357.
Библиографическая ссылка Smith, HL and Thieme, H. 1990. Monotone semiflows in scalar non-quasi-monotone functional differential equations. J. Math. Anal. Appl., 150: 289–306.
Библиографическая ссылка Takáč, P. 1990. Convergence to equilibria on invariant d-hypersurfaces for strongly increasing discrete-time semigroups. J. Math. Anal. Appl., 148: 223–244.

Скрыть метаданые