Автор |
Krause, Ulrich |
Автор |
Pituk, Mihály |
Дата выпуска |
2004 |
dc.description |
Sufficient conditions are given under which the higher order difference equation x <sub> n+1</sub>= f(x <sub>n</sub>,x<sub> n-1</sub>,...,x<sub>n-k</sub> ), n=0,1,2,... generates an order preserving discrete dynamical system with respect to the discrete exponential ordering. It is shown that under the above monotonicity assumption the boundedness of all solutions as well as the local and global stability of an equilibrium hold if and only if they hold for the much simpler first order equation x <sub> n+1</sub>=h(x <sub>n</sub> ), where h(x)=f(x,x,…,x). As an application, a second order nonlinear difference equation from macroeconomics and a discrete analogue of a model of haematopoiesis are discussed. |
Формат |
application.pdf |
Издатель |
Gordon and BreachReading, UK |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Higher order difference equations |
Тема |
Order preserving map |
Тема |
Discrete exponential ordering |
Тема |
Boundedness |
Тема |
Local stability |
Тема |
Global asymptotic stability |
Тема |
39A10 |
Тема |
39A11 |
Тема |
39A12 |
Название |
Boundedness and Stability for Higher Order Difference Equations<sup>*</sup> |
Тип |
research-article |
DOI |
10.1080/1023619031000115377 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
10 |
Первая страница |
343 |
Последняя страница |
356 |
Аффилиация |
Krause, Ulrich; Fachbereich Mathematik und Informatik, Universität Bremen |
Аффилиация |
Pituk, Mihály; Department of Mathematics and Computing, University of Veszprém |
Выпуск |
4 |
Библиографическая ссылка |
Dancer, EN and Hess, P. 1991. Stability of fixed points for order-preserving discrete-time dynamical systems. J. Reine Angew. Math., 419: 125–139. |
Библиографическая ссылка |
Fisher, ME. 1984. Stability of a class of delay-difference equations. Nonlinear Anal. T.M.A., 8: 645–654. |
Библиографическая ссылка |
Györi, I, Ladas, G and Vlahos, PN. 1991. Global attractivity in a delay difference equation. Nonlinear Anal. T.M.A., 17: 473–479. |
Библиографическая ссылка |
Karakostas, G, Philos, Ch. G and Sficas, YG. 1991. The dynamics of some discrete population models. Nonlinear Anal. T.M.A., 17: 1069–1084. |
Библиографическая ссылка |
Kloeden, PE and Rubinov, AM. 2002. Attracting sets for increasing co-radiant and topical operators. Math. Nachr., 243: 134–145. |
Библиографическая ссылка |
Kocic, VL and Ladas, G. 1992. Global attractivity in nonlinear delay-difference equations. Proc. Am. Math. Soc., 115: 1083–1088. |
Библиографическая ссылка |
Krause, U. 1995. Stability trichotomy, path stability, and relative stability for positive nonlinear difference equations of higher order. J. Difference Equations Appl., 1: 323–346. |
Библиографическая ссылка |
Poláčik, P and Tereščák, I. 1991. Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems. Arch. Rat. Mech. Anal., 116: 339–360. |
Библиографическая ссылка |
Sedaghat, H. 1997. A class of nonlinear second order difference equations from macroeconomics. Nonlinear Anal. T.M.A., 29: 593–603. |
Библиографическая ссылка |
Smith, HL. 1998. Planar competitive and cooperative difference equations. J. Difference Equations Appl., 3: 335–357. |
Библиографическая ссылка |
Smith, HL and Thieme, H. 1990. Monotone semiflows in scalar non-quasi-monotone functional differential equations. J. Math. Anal. Appl., 150: 289–306. |
Библиографическая ссылка |
Takáč, P. 1990. Convergence to equilibria on invariant d-hypersurfaces for strongly increasing discrete-time semigroups. J. Math. Anal. Appl., 148: 223–244. |