Автор |
Su, You-Hui |
Автор |
Li § , Wan-Tong |
Автор |
Stević, Stevo |
Дата выпуска |
2005 |
dc.description |
In this paper, we study the global attractivity, the invariant intervals, the periodic and oscillatory character of the difference equationwhere a, b, A, B are positive real numbers, k≥1 is a positive integer, and the initial conditions x <sub>−k </sub>,…,x <sub>−1</sub>,x <sub>0</sub> are nonnegative real numbers such that x <sub>−k</sub> or x <sub>0</sub> or both are positive real numbers. We show that the positive equilibrium of the difference equation is a global attractor. As a corollary, our main result confirms a conjecture proposed by Kulenović et al. (2003) [The dynamics of facts and conjectures, Computational Mathematics Applications, 45, 1087–1099].Supported by the NNSF of China (10171040), the NSF of Gansu Province of China (ZS011-A25-007-Z) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education of China. |
Формат |
application.pdf |
Издатель |
Taylor & Francis GroupAbingdon, UK |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Difference equation |
Тема |
Invariant interval |
Тема |
Global attractor |
Тема |
Globally asymptotically stable |
Тема |
Oscillatory |
Тема |
39A10 |
Название |
Dynamics of a higher order nonlinear rational difference equation |
Тип |
research-article |
DOI |
10.1080/10236190512331319352 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
11 |
Первая страница |
133 |
Последняя страница |
150 |
Аффилиация |
Su, You-Hui; Department of Mathematics, Hexi University; Department of Mathematics, Lanzhou University Lanzhou |
Аффилиация |
Li § , Wan-Tong; Department of Mathematics, Lanzhou University Lanzhou |
Аффилиация |
Stević, Stevo; Mathematical Institute of Serbian Academy of Science |
Выпуск |
2 |