Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Su, You-Hui
Автор Li § , Wan-Tong
Автор Stević, Stevo
Дата выпуска 2005
dc.description In this paper, we study the global attractivity, the invariant intervals, the periodic and oscillatory character of the difference equationwhere a, b, A, B are positive real numbers, k≥1 is a positive integer, and the initial conditions x <sub>−k </sub>,…,x <sub>−1</sub>,x <sub>0</sub> are nonnegative real numbers such that x <sub>−k</sub> or x <sub>0</sub> or both are positive real numbers. We show that the positive equilibrium of the difference equation is a global attractor. As a corollary, our main result confirms a conjecture proposed by Kulenović et al. (2003) [The dynamics of facts and conjectures, Computational Mathematics Applications, 45, 1087–1099].Supported by the NNSF of China (10171040), the NSF of Gansu Province of China (ZS011-A25-007-Z) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education of China.
Формат application.pdf
Издатель Taylor & Francis GroupAbingdon, UK
Копирайт Copyright Taylor and Francis Group, LLC
Тема Difference equation
Тема Invariant interval
Тема Global attractor
Тема Globally asymptotically stable
Тема Oscillatory
Тема 39A10
Название Dynamics of a higher order nonlinear rational difference equation
Тип research-article
DOI 10.1080/10236190512331319352
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 11
Первая страница 133
Последняя страница 150
Аффилиация Su, You-Hui; Department of Mathematics, Hexi University; Department of Mathematics, Lanzhou University Lanzhou
Аффилиация Li § , Wan-Tong; Department of Mathematics, Lanzhou University Lanzhou
Аффилиация Stević, Stevo; Mathematical Institute of Serbian Academy of Science
Выпуск 2

Скрыть метаданые