Автор |
Berenhaut, Kenneth S. |
Автор |
Stević, Stevo |
Дата выпуска |
2005 |
dc.description |
In this note we show that every positive solution of the equationconverges to a period-three solution. This result confirms Conjecture 5.4.5 in M.R.S. Kulenović and G. Ladas, 2002, Dynamics of Second Order Rational Difference Equations (Chapman & Hall/CRC). |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Difference equation |
Тема |
Positive solutions |
Тема |
Three-periodic solution |
Тема |
Stability |
Тема |
Primary |
Тема |
39A10 |
Название |
A note on the difference equation |
Тип |
research-article |
DOI |
10.1080/10236190500331370 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
11 |
Первая страница |
1225 |
Последняя страница |
1228 |
Аффилиация |
Berenhaut, Kenneth S.; Wake Forest University, Department of Mathematics |
Аффилиация |
Stević, Stevo; Mathematical Institute of the Serbian Academy of Science |
Выпуск |
14 |
Библиографическая ссылка |
Abu-Saris, R.M. and DeVault, R. 2003. Global stability of . Applied Mathematics Letters, 16(2): 173–178. |
Библиографическая ссылка |
DeVault, R., Ladas, G. and Schultz, S.W. 2000. On the recursive sequence . Journal of Difference Equations and Applications, 6(4): 481–483. |
Библиографическая ссылка |
Kulenović, M.R.S. and Ladas, G. 2002. Dynamics of Second Order Rational Difference Equations, Chapman & Hall/CRC. |
Библиографическая ссылка |
Stević, S. 2003. On the recursive sequence . Taiwanese Journal of Mathematics, 7(2): 249–259. |