Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Berenhaut, Kenneth S.
Автор Stević, Stevo
Дата выпуска 2006
dc.description This paper studies the boundedness, global asymptotic stability and periodicity for solutions of the equationwith p, A ∈ (0, ∞), p ≠ 1 and x <sub>− 2</sub>, x <sub>− 1</sub> ∈ (0, ∞). It is shown that: (a) all solutions converge to the unique equilibrium, , whenever p ≤ min{1, (A+1)/2}; (b) all solutions converge to period two solutions whenever (A+1)/2 < p < 1; and (c) there exist unbounded solutions whenever p>1. These results complement those for the case p = 1 in A.M. Amleh et al., On the recursive sequence Journal of Mathematical Analysis and Applications 233 (1999), 790–798.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема Rational difference equation
Тема Stability
Тема Boundedness
Тема Period two solution
Тема 39A10
Тема 39A11
Название The behaviour of the positive solutions of the difference equation
Тип research-article
DOI 10.1080/10236190600836377
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 12
Первая страница 909
Последняя страница 918
Аффилиация Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University
Аффилиация Stević, Stevo; Mathematical Institute of the Serbian Academy of Science
Выпуск 9
Библиографическая ссылка Amleh, A.M., Grove, E.A., Ladas, G. and Georgiou, D.A. 1999. On the recursive sequence y <sub> n+1</sub> = α+(y <sub> n − 1</sub>/y <sub> n </sub>). Journal of Mathematical Analysis and Applications, 233: 790–798.
Библиографическая ссылка Berenhaut, K.S., Foley, J.D. and Stević, S. 2006. The global attractivity of the rational difference equation y <sub> n </sub> = 1+(y <sub> n − k </sub>/y <sub> n − m </sub>). Proceedings of the American Mathematical Society, (to appear)
Библиографическая ссылка Berenhaut, K.S. and Stević, S. 2005. A note on the difference equation x <sub> n+1</sub> = (1/x <sub> n </sub> x <sub> n − 1</sub>)+(1/x <sub> n − 3</sub> x <sub> n − 4</sub>). Journal of Differential Equations and Applications, 11(14): 1225–1228.
Библиографическая ссылка Berenhaut, K.S. and Stević, S. 2006. A note on positive nonoscillatory solutions of the difference equation . Journal of Differential Equations and Applications, 12(5): 495–499.
Библиографическая ссылка Berg, L. 1968. Asymptotische Darstellungen und Entwicklungen, Berlin: Dt. Verlag Wiss..
Библиографическая ссылка Berg, L. 2002. On the asymptotics of nonlinear difference equations. Zeitschrift für Analysis und ihre Anwendungen, 21(4): 1061–1074.
Библиографическая ссылка Berg, L. 2004. Inclusion theorems for non-linear difference equations with applications. Journal of Differential Equations and Applications, 10(4): 399–408.
Библиографическая ссылка Berg, L. 2005. Corrections to “inclusion theorems for non-linear difference equations with applications”. Journal of Differential Equations and Applications, 11(2): 181–182. from [3]
Библиографическая ссылка Berg, L. and Wolfersdorf, L.V. 2005. On a class of generalized autoconvolution equations of the third kind. Zeitschrift für Analysis und ihre Anwendungen, 24(2): 217–250.
Библиографическая ссылка DeVault, R., Kent, C. and Kosmala, W. 2003. On the recursive sequence x <sub> n+1</sub> = p+(x <sub> n − k </sub>/x <sub> n </sub>). Journal of Differential Equations and Applications, 9(8): 721–730.
Библиографическая ссылка DeVault, R., Ladas, G. and Schultz, S.W. 2000. On the recursive sequence x <sub> n+1</sub> = (A/x <sub> n </sub> x <sub> n − 1</sub>)+(1/x <sub> n − 3</sub> x <sub> n − 4</sub>). Journal of Differential Equations and Applications, 6(4): 481–483.
Библиографическая ссылка El-Owaidy, H.M., Ahmed, A.M. and Mousa, M.S. 2003. On asymptotic behaviour of the difference equation . Journal of Applied Mathematics & Computing, 12(1–2): 31–37.
Библиографическая ссылка El-Owaidy, H.M., Ahmed, A.M. and Youssef, A.M. 2005. The dynamics on the recursive sequence . Applied Mathematics Letters, 18(9): 1013–1018.
Библиографическая ссылка Grove, E.A. and Ladas, G. 2004. Periodicities in Nonlinear Difference Equations, Boca Raton: Chapman & Hall/CRC Press.
Библиографическая ссылка Huo, H.F. and Li, W.T. 2005. Permanence and global stability of positive solutions of a nonautonomous discrette ratio-dependent predator-prey mode. Discrete Dynamics in Nature and Society, 2005(2): 135–144.
Библиографическая ссылка Kocić, V. and Ladas, G. 1993. “Global behavior of nonlinear difference equations of higher order with applications”. In Mathematics and its Applications, Dordrecht: Kluwer Academic Publishers Group. 256
Библиографическая ссылка Kulenović, M.R.S. and Ladas, G. 2002. Dynamics of Second Order Rational Difference Equations, Boca Raton: Chapman & Hall/CRC.
Библиографическая ссылка Kulenović, M.R.S., Ladas, G. and Overdeep, C.B. 2004. On the dynamics of x <sub> n+1</sub> = p <sub> n </sub>+(x <sub> n − 1</sub>/x <sub> n </sub>) with a period-two coefficient. Journal of Differential Equations and Applications, 10(10): 905–914.
Библиографическая ссылка Patula, W.T. and Voulov, H.D. 2003. On the oscillation and periodic character of a third order rational difference equation. Proceedings of the American Mathematical Society, 131(3): 905–909.
Библиографическая ссылка Stević, S. 2002. Asymptotic behaviour of a sequence defined by iteration with applications. Colloquium Mathematicum, 93(2): 267–276.
Библиографическая ссылка Stević, S. 2003. Asymptotic behaviour of a nonlinear difference equation. Indian Journal of Pure and Applied Mathematics, 34(12): 1681–1687.
Библиографическая ссылка Stević, S. 2003. On the recursive sequence . Taiwanese Journal of Mathematics, 7(2): 249–259.
Библиографическая ссылка Stević, S. 2004. A note on periodic character of a difference equation. Journal of Differential Equations and Applications, 10(10): 929–932.
Библиографическая ссылка Stević, S. 2004. Periodic character of a difference equation. Rostocker Mathematisches Kolloquium, 59: 3–10.
Библиографическая ссылка Stević, S. 2005. On the recursive sequence . Journal of Applied Mathematics & Computing, 18(1–2): 229–234.
Библиографическая ссылка Stević, S. 2006. Global stability and asymptotics of some classes of rational difference equations. Journal of Mathemaical Analysis and Applications, 316: 60–68.
Библиографическая ссылка Stević, S. 2006. On positive solutions of a (k+1)-th order difference equation. Applied Mathematics Letters, 19(5): 427–431.
Библиографическая ссылка Stević, S. Existence of nontrivial solutions of a rational difference equation. Applied Mathematics Letters, (to appear)
Библиографическая ссылка Wang, L.L. and Li, W.T. 2005. Existence and global attractivity of positive periodic solution for an impulsive delay population model. Dynamics of Continuous, Discrete and Impulsive System Series A Mathematical Analysis, 12(3–4): 457–468.
Библиографическая ссылка Yan, X.X., Li, W.T. and Zhao, Z. 2005. On the recursive sequence x <sub> n+1</sub> = α − (x <sub> n </sub>/x <sub> n − 1</sub>). Journal of Applied Mathematics and Computing, 17(1): 269–282.

Скрыть метаданые