Автор |
Berenhaut, Kenneth S. |
Автор |
Stević, Stevo |
Дата выпуска |
2006 |
dc.description |
This paper studies the boundedness, global asymptotic stability and periodicity for solutions of the equationwith p, A ∈ (0, ∞), p ≠ 1 and x <sub>− 2</sub>, x <sub>− 1</sub> ∈ (0, ∞). It is shown that: (a) all solutions converge to the unique equilibrium, , whenever p ≤ min{1, (A+1)/2}; (b) all solutions converge to period two solutions whenever (A+1)/2 < p < 1; and (c) there exist unbounded solutions whenever p>1. These results complement those for the case p = 1 in A.M. Amleh et al., On the recursive sequence Journal of Mathematical Analysis and Applications 233 (1999), 790–798. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Rational difference equation |
Тема |
Stability |
Тема |
Boundedness |
Тема |
Period two solution |
Тема |
39A10 |
Тема |
39A11 |
Название |
The behaviour of the positive solutions of the difference equation |
Тип |
research-article |
DOI |
10.1080/10236190600836377 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
12 |
Первая страница |
909 |
Последняя страница |
918 |
Аффилиация |
Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University |
Аффилиация |
Stević, Stevo; Mathematical Institute of the Serbian Academy of Science |
Выпуск |
9 |
Библиографическая ссылка |
Amleh, A.M., Grove, E.A., Ladas, G. and Georgiou, D.A. 1999. On the recursive sequence y <sub> n+1</sub> = α+(y <sub> n − 1</sub>/y <sub> n </sub>). Journal of Mathematical Analysis and Applications, 233: 790–798. |
Библиографическая ссылка |
Berenhaut, K.S., Foley, J.D. and Stević, S. 2006. The global attractivity of the rational difference equation y <sub> n </sub> = 1+(y <sub> n − k </sub>/y <sub> n − m </sub>). Proceedings of the American Mathematical Society, (to appear) |
Библиографическая ссылка |
Berenhaut, K.S. and Stević, S. 2005. A note on the difference equation x <sub> n+1</sub> = (1/x <sub> n </sub> x <sub> n − 1</sub>)+(1/x <sub> n − 3</sub> x <sub> n − 4</sub>). Journal of Differential Equations and Applications, 11(14): 1225–1228. |
Библиографическая ссылка |
Berenhaut, K.S. and Stević, S. 2006. A note on positive nonoscillatory solutions of the difference equation . Journal of Differential Equations and Applications, 12(5): 495–499. |
Библиографическая ссылка |
Berg, L. 1968. Asymptotische Darstellungen und Entwicklungen, Berlin: Dt. Verlag Wiss.. |
Библиографическая ссылка |
Berg, L. 2002. On the asymptotics of nonlinear difference equations. Zeitschrift für Analysis und ihre Anwendungen, 21(4): 1061–1074. |
Библиографическая ссылка |
Berg, L. 2004. Inclusion theorems for non-linear difference equations with applications. Journal of Differential Equations and Applications, 10(4): 399–408. |
Библиографическая ссылка |
Berg, L. 2005. Corrections to “inclusion theorems for non-linear difference equations with applications”. Journal of Differential Equations and Applications, 11(2): 181–182. from [3] |
Библиографическая ссылка |
Berg, L. and Wolfersdorf, L.V. 2005. On a class of generalized autoconvolution equations of the third kind. Zeitschrift für Analysis und ihre Anwendungen, 24(2): 217–250. |
Библиографическая ссылка |
DeVault, R., Kent, C. and Kosmala, W. 2003. On the recursive sequence x <sub> n+1</sub> = p+(x <sub> n − k </sub>/x <sub> n </sub>). Journal of Differential Equations and Applications, 9(8): 721–730. |
Библиографическая ссылка |
DeVault, R., Ladas, G. and Schultz, S.W. 2000. On the recursive sequence x <sub> n+1</sub> = (A/x <sub> n </sub> x <sub> n − 1</sub>)+(1/x <sub> n − 3</sub> x <sub> n − 4</sub>). Journal of Differential Equations and Applications, 6(4): 481–483. |
Библиографическая ссылка |
El-Owaidy, H.M., Ahmed, A.M. and Mousa, M.S. 2003. On asymptotic behaviour of the difference equation . Journal of Applied Mathematics & Computing, 12(1–2): 31–37. |
Библиографическая ссылка |
El-Owaidy, H.M., Ahmed, A.M. and Youssef, A.M. 2005. The dynamics on the recursive sequence . Applied Mathematics Letters, 18(9): 1013–1018. |
Библиографическая ссылка |
Grove, E.A. and Ladas, G. 2004. Periodicities in Nonlinear Difference Equations, Boca Raton: Chapman & Hall/CRC Press. |
Библиографическая ссылка |
Huo, H.F. and Li, W.T. 2005. Permanence and global stability of positive solutions of a nonautonomous discrette ratio-dependent predator-prey mode. Discrete Dynamics in Nature and Society, 2005(2): 135–144. |
Библиографическая ссылка |
Kocić, V. and Ladas, G. 1993. “Global behavior of nonlinear difference equations of higher order with applications”. In Mathematics and its Applications, Dordrecht: Kluwer Academic Publishers Group. 256 |
Библиографическая ссылка |
Kulenović, M.R.S. and Ladas, G. 2002. Dynamics of Second Order Rational Difference Equations, Boca Raton: Chapman & Hall/CRC. |
Библиографическая ссылка |
Kulenović, M.R.S., Ladas, G. and Overdeep, C.B. 2004. On the dynamics of x <sub> n+1</sub> = p <sub> n </sub>+(x <sub> n − 1</sub>/x <sub> n </sub>) with a period-two coefficient. Journal of Differential Equations and Applications, 10(10): 905–914. |
Библиографическая ссылка |
Patula, W.T. and Voulov, H.D. 2003. On the oscillation and periodic character of a third order rational difference equation. Proceedings of the American Mathematical Society, 131(3): 905–909. |
Библиографическая ссылка |
Stević, S. 2002. Asymptotic behaviour of a sequence defined by iteration with applications. Colloquium Mathematicum, 93(2): 267–276. |
Библиографическая ссылка |
Stević, S. 2003. Asymptotic behaviour of a nonlinear difference equation. Indian Journal of Pure and Applied Mathematics, 34(12): 1681–1687. |
Библиографическая ссылка |
Stević, S. 2003. On the recursive sequence . Taiwanese Journal of Mathematics, 7(2): 249–259. |
Библиографическая ссылка |
Stević, S. 2004. A note on periodic character of a difference equation. Journal of Differential Equations and Applications, 10(10): 929–932. |
Библиографическая ссылка |
Stević, S. 2004. Periodic character of a difference equation. Rostocker Mathematisches Kolloquium, 59: 3–10. |
Библиографическая ссылка |
Stević, S. 2005. On the recursive sequence . Journal of Applied Mathematics & Computing, 18(1–2): 229–234. |
Библиографическая ссылка |
Stević, S. 2006. Global stability and asymptotics of some classes of rational difference equations. Journal of Mathemaical Analysis and Applications, 316: 60–68. |
Библиографическая ссылка |
Stević, S. 2006. On positive solutions of a (k+1)-th order difference equation. Applied Mathematics Letters, 19(5): 427–431. |
Библиографическая ссылка |
Stević, S. Existence of nontrivial solutions of a rational difference equation. Applied Mathematics Letters, (to appear) |
Библиографическая ссылка |
Wang, L.L. and Li, W.T. 2005. Existence and global attractivity of positive periodic solution for an impulsive delay population model. Dynamics of Continuous, Discrete and Impulsive System Series A Mathematical Analysis, 12(3–4): 457–468. |
Библиографическая ссылка |
Yan, X.X., Li, W.T. and Zhao, Z. 2005. On the recursive sequence x <sub> n+1</sub> = α − (x <sub> n </sub>/x <sub> n − 1</sub>). Journal of Applied Mathematics and Computing, 17(1): 269–282. |