Автор |
Berenhaut, Kenneth S. |
Автор |
Foley, John D. |
Автор |
Stević, Stevo |
Дата выпуска |
2006 |
dc.description |
This paper studies the boundedness character of the positive solutions of the difference equation.where with . We prove that if , then every solution of the equation is bounded, and if and k is even, then there exist positive unbounded solutions. For the case and k odd, we consider the related equation and show that every integer solution is eventually periodic. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Max difference equation |
Тема |
Boundedness |
Тема |
Positive solution |
Тема |
Periodic solution |
Тема |
39A10 |
Тема |
39A11 |
Название |
Boundedness character of positive solutions of a max difference equation |
Тип |
research-article |
DOI |
10.1080/10236190600949766 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
12 |
Первая страница |
1193 |
Последняя страница |
1199 |
Аффилиация |
Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University |
Аффилиация |
Foley, John D.; Department of Mathematics, Wake Forest University |
Аффилиация |
Stević, Stevo; Mathematical Institute of the Serbian Academy of Science |
Выпуск |
12 |
Библиографическая ссылка |
Amleh, A.M., Hoag, J. and Ladas, G. 1998. A difference equation with eventually periodic solutions. Computational Mathematics and its Applications, 36(10–12): 401–404. |
Библиографическая ссылка |
Ladas, G. 1996. Open problems and conjectures. Journal Differential Equations and Applications, 2: 339–341. |
Библиографическая ссылка |
Ladas, G. 1998. Open problems and conjectures. Journal Differential Equations and Applications, 4(3): 312 |
Библиографическая ссылка |
Mishev, D.P., Patula, W.T. and Voulov, H.D. 2002. A reciprocal difference equation with maximum. Computational Mathematics and its Applications, 43: 1021–1026. |
Библиографическая ссылка |
Mishkis, A.D. 1977. On some problems of the theory of differential equations with deviating argument. UMN, 32:2(194): 173–202. |
Библиографическая ссылка |
Popov, E.P. 1966. Automatic Regulation and Control Moscow (in Russian) |
Библиографическая ссылка |
Stević, S. 2003. On the recursive sequence . Taiwanese Journal of Mathamatics, 7(2): 249–259. |