Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Berenhaut, Kenneth S.
Автор Foley, John D.
Автор Stević, Stevo
Дата выпуска 2006
dc.description This paper studies the boundedness character of the positive solutions of the difference equation.where with . We prove that if , then every solution of the equation is bounded, and if and k is even, then there exist positive unbounded solutions. For the case and k odd, we consider the related equation and show that every integer solution is eventually periodic.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема Max difference equation
Тема Boundedness
Тема Positive solution
Тема Periodic solution
Тема 39A10
Тема 39A11
Название Boundedness character of positive solutions of a max difference equation
Тип research-article
DOI 10.1080/10236190600949766
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 12
Первая страница 1193
Последняя страница 1199
Аффилиация Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University
Аффилиация Foley, John D.; Department of Mathematics, Wake Forest University
Аффилиация Stević, Stevo; Mathematical Institute of the Serbian Academy of Science
Выпуск 12
Библиографическая ссылка Amleh, A.M., Hoag, J. and Ladas, G. 1998. A difference equation with eventually periodic solutions. Computational Mathematics and its Applications, 36(10–12): 401–404.
Библиографическая ссылка Ladas, G. 1996. Open problems and conjectures. Journal Differential Equations and Applications, 2: 339–341.
Библиографическая ссылка Ladas, G. 1998. Open problems and conjectures. Journal Differential Equations and Applications, 4(3): 312
Библиографическая ссылка Mishev, D.P., Patula, W.T. and Voulov, H.D. 2002. A reciprocal difference equation with maximum. Computational Mathematics and its Applications, 43: 1021–1026.
Библиографическая ссылка Mishkis, A.D. 1977. On some problems of the theory of differential equations with deviating argument. UMN, 32:2(194): 173–202.
Библиографическая ссылка Popov, E.P. 1966. Automatic Regulation and Control Moscow (in Russian)
Библиографическая ссылка Stević, S. 2003. On the recursive sequence . Taiwanese Journal of Mathamatics, 7(2): 249–259.

Скрыть метаданые