Автор |
El-Morshedy, Hassan A. |
Автор |
López, Víctor Jiménez |
Дата выпуска |
2008 |
dc.description |
The global attractivity character of nonlinear higher order difference equations of the formis investigated when g is dominated by an interval scalar map. Some basic properties of the interval map are obtained and used to prove new global attractivity criteria for the above equation with no monotonicity restrictions on g. Our results are applied to many models from mathematical biology and economy. The derived global attractivity criteria of these models are either new or improve substantially known ones. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
difference equations |
Тема |
global attractor |
Тема |
discrete population models |
Тема |
Schwarzian derivative |
Тема |
39A10 |
Тема |
39A11 |
Тема |
92D25 |
Название |
Global attractors for difference equations dominated by one-dimensional maps |
Тип |
research-article |
DOI |
10.1080/10236190701671632 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
14 |
Первая страница |
391 |
Последняя страница |
410 |
Аффилиация |
El-Morshedy, Hassan A.; Department of Mathematics, ABHA Teachers' College |
Аффилиация |
López, Víctor Jiménez; Departamento de Matemáticas, Universidad de Murcia |
Выпуск |
4 |
Библиографическая ссылка |
Agarwal, R.P., Li, W.T. and Pang, P.Y.H. 2002. Asymptotic behavior of a class of nonlinear delay difference equations. J. Difference Equ. Appl., 8: 719–728. |
Библиографическая ссылка |
Baumol, W.J. and Wolff, E.N. 1992. “Feedback between R&D and productivity growth: A chaos model”. In Cycles and Chaos in Economic Equilibrium, Edited by: Benhabib, J. 355–373. Princeton, NJ: Princeton University Press. |
Библиографическая ссылка |
Block, L.S. and Coppel, W.A. 1992. Dynamics in One Dimension, Vol. 1513, Berlin: Springer-Verlag. Lecture Notes in Mathematics |
Библиографическая ссылка |
DeVault, R. 1995. Oscillation and stability in a delay model of perennial grass. J. Difference Equ. Appl., 1: 173–185. |
Библиографическая ссылка |
DeVault, R. 2001. Global behavior of (p+y<sub>n − k</sub>)/(qy<sub>n</sub>+y<sub>n − k</sub>). Nonlinear Anal., 47: 4743–4751. Series A: Theory and Methods |
Библиографическая ссылка |
El-Morshedy, H.A. 2003. The global attractivity of difference equations of nonincreasing nonlinearities with applications. Comput. Math. Appl., 45: 749–758. |
Библиографическая ссылка |
El-Morshedy, H.A. and Gopalsamy, K. 2003. Oscillation and asymptotic behaviour of a class of higher-order non-linear difference equations. Ann. Mat. Pura Appl. Ser (4), 182: 143–159. |
Библиографическая ссылка |
El-Morshedy, H.A. and Liz, E. 2005. Convergence to equilibria in discrete population models. J. Difference Equ. Appl., 11: 117–131. |
Библиографическая ссылка |
El-Morshedy, H.A. and Liz, E. 2006. Globally attracting fixed points in higher order discrete population models. J. Math. Biol., 53: 365–384. |
Библиографическая ссылка |
Fisher, M.E. 1984. Stability of a class of delay-difference equations. Nonlinear Anal., 8: 645–654. Series A: Theory and Methods |
Библиографическая ссылка |
Graef, J.R. and Qian, C. 1999. Global stability in a nonlinear difference equation. J. Difference Equ. Appl., 5: 251–270. |
Библиографическая ссылка |
Graef, J.R. and Qian, C. 2002. Global attractivity of the equilibrium of a nonlinear difference equation. Czechoslovak Math. J., 52: 757–769. |
Библиографическая ссылка |
Győri, I. and Trofimchuk, S. 2000. Global attractivity and persistence in a discrete population model. J. Difference Equ. Appl., 6: 647–665. |
Библиографическая ссылка |
Hautus, M.L.J. and Bolis, T.S. 1979. Solution to problem E2721. Amer. Math. Monthly, 86: 865–866. |
Библиографическая ссылка |
Ivanov, A. F. 1994. On global stability in a nonlinear discrete model. Nonlinear Anal., 23: 1383–1389. Series A: Theory and Methods |
Библиографическая ссылка |
Karakostas, G., Philos, Ch.G. and Sficas, Y.G. 1991. The dynamics of some population models. Nonlinear Anal., 17: 1069–1084. Series A: Theory and Methods |
Библиографическая ссылка |
Kocić, V.L. and Ladas, G. 1993. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Dordrecht: Kluwer. |
Библиографическая ссылка |
Kulenovic, M.R.S. and Ladas, G. 2002. Dynamics of Second Order Rational Difference Equations, Boca Raton: Chapman and Hall/CRC. |
Библиографическая ссылка |
Kulenovic, M.R.S. and Yakubu, A.A. 2004. Compensatory versus overcompensatory dynamics in density-dependent Leslie models. J. Difference Equ. Appl., 10: 1251–1265. |
Библиографическая ссылка |
Liz, E. 2007. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete Contin. Dyn. Syst. Ser. B, 7: 191–199. |
Библиографическая ссылка |
MacDonald, N. 1976. Extended diapause in a discrete generation population model. Math. Biosci., 31: 255–257. |
Библиографическая ссылка |
MacDonald, N. 1978. Time Lags in Biological Models, Vol. 27, Berlin: Springer-Verlag. Lecture Notes in Biomathematics |
Библиографическая ссылка |
Nenya, O.I., Tkachenko, V.I. and Trofimchuk, S. I. 2004. On the global stability of a nonlinear difference equation. Nonlinear Oscil. (N. Y.), 7: 473–480. |
Библиографическая ссылка |
Sedaghat, H. 1997. The impossibility of unstable, globally attracting fixed points for continuous mappings of the line. Amer. Math. Monthly, 104: 356–358. |
Библиографическая ссылка |
Sedaghat, H. 1999. Inverse map characterization of asymptotic stability on the line. Rocky Mountain J. Math., 29: 1505–1519. |
Библиографическая ссылка |
Sedaghat, H. 2000. Effects of temporal hetrogeniety in the Baumol–Wolf productivity growth model. Econom. Theory, 15: 491–498. |
Библиографическая ссылка |
Sedaghat, H. 2003. Nonlinear Difference Equations: Theory with Applications to Social Science Models, Dordrecht: Kluwer. |
Библиографическая ссылка |
Sedaghat, H. and Wang, W. 2000. The asymptotic behavior of a class of nonlinear delay difference equations. Proc. Amer. Math. Soc., 129: 1775–1783. |
Библиографическая ссылка |
Tilman, D. and Wedin, D. 1991. Oscillation and chaos in the dynamics of a perennial grass. Nature, 353: 653–655. |
Библиографическая ссылка |
Tkachenko, V. and Trofimchuk, S. 2005. Global stability in difference equations satisfying the generalized York condition. J. Math. Anal. Appl., 303: 173–187. |