Автор |
Hu, Lin-Xia |
Автор |
Li, Wan-Tong |
Автор |
Stević, Stevo |
Дата выпуска |
2008 |
dc.description |
The main goal of the paper is to confirm Conjecture 9.5.5 stated by Kulenović and Ladas in Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures (Chapman & Hall/CRC, Boca Raton, FL, 2002). The boundedness, invariant intervals, semicycles and global attractivity of all nonnegative solutions of the equationare studied, where the parameters and the initial conditions are such that . It is shown that if the equation has no prime period-two solutions, then the unique positive equilibrium of the equation is globally asymptotically stable. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
difference equation |
Тема |
boundedness |
Тема |
invariant interval |
Тема |
semicycle |
Тема |
global attractor |
Тема |
globally asymptotically stable |
Тема |
39A10 |
Название |
Global asymptotic stability of a second order rational difference equation |
Тип |
research-article |
DOI |
10.1080/10236190701827945 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
14 |
Первая страница |
779 |
Последняя страница |
797 |
Аффилиация |
Hu, Lin-Xia; Department of Mathematics, Tianshui Normal University |
Аффилиация |
, ; School of Mathematics and Statistics, Lanzhou University |
Аффилиация |
Li, Wan-Tong; School of Mathematics and Statistics, Lanzhou University |
Аффилиация |
Stević, Stevo; Mathematical Institute of the Serbian Academy of Science |
Выпуск |
8 |
Библиографическая ссылка |
Agarwal, R.P., Li, W.T. and Pang, P.Y.H. 2002. Asymptotic behavior of a class of nonlinear delay difference equations. J. Difference Equ. Appl., 8: 719–728. |
Библиографическая ссылка |
Amleh, A.M., Camouzus, E. and Ladas, G. 2006. On the boundedness character of rational equations, part 2. J. Difference Equ. Appl., 12(6): 637–650. |
Библиографическая ссылка |
Berenhaut, K.S., Foley, J.D. and Stević, S. 2006. Quantitative bound for the recursive sequence . Appl. Math. Lett., 19(9): 983–989. |
Библиографическая ссылка |
Berenhaut, K.S., Foley, J.D. and Stević, S. 2007. The global attractivity of the rational difference equation . Proc. Amer. Math. Soc., 135: 1133–1140. |
Библиографическая ссылка |
Berenhaut, K.S. and Stević, S. 2005. A note on the difference equation . J. Difference Equ. Appl., 11(14): 1225–1228. |
Библиографическая ссылка |
Berenhaut, K. and Stević, S. 2006. A note on positive nonoscillatory solutions of the difference equation . J. Difference Equ. Appl., 12(5): 495–499. |
Библиографическая ссылка |
Berenhaut, K. and Stević, S. 2006. The behaviour of the positive solutions of the difference equation . J. Difference Equ. Appl., 12(9): 909–918. |
Библиографическая ссылка |
Berenhaut, K. and Stević, S. 2007. The difference equation has solutions converging to zero. J. Math. Anal. Appl., 326: 1466–1471. |
Библиографическая ссылка |
Berg, L. 2002. On the asymptotics of nonlinear difference equations. Z. Anal. Anwend., 21(4): 1061–1074. |
Библиографическая ссылка |
Grove, E.A., Kent, G.M., Levins, R., Ladas, G. and Valicenti, S. 2000. “Global stability in some population models”. In Proceedings of the Fourth International Conference on Difference Equations and Applications, 149–176. Poznan, Poland: Gordon and Breach Science Publishers. August 27–31, 1998 |
Библиографическая ссылка |
Hautus, M.L.J. and Bolis, T.S. 1979. Solution to problem E2721. Amer. Math. Monthly, 86: 865–866. |
Библиографическая ссылка |
Iričanin, B. 2007. A global convergence result for a higher-order difference equation. Discrete Dyn. Nat. Soc., (2007): 7 Article ID 91292 |
Библиографическая ссылка |
Karakostas, G. and Stević, S. 2004. On the recursive sequence . J. Difference Equ. Appl., 10(9): 809–815. |
Библиографическая ссылка |
Kocic, V.L. and Ladas, G. 1993. Global Behavior of Nonlinear Difference Equations of Higher Order with Application, Dordrecht: Kluwer Academic Publishers. |
Библиографическая ссылка |
Kocic, V.L., Ladas, G. and Rodrigues, I.W. 1993. On rational recursives. J. Math. Anal. Appl., 173: 127–157. |
Библиографическая ссылка |
Kulenović, M.R. and Ladas, G. 2002. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Boca Raton: Chapman Hall/CRC. |
Библиографическая ссылка |
Li, W.T. and Sun, H.R. 2002. Global attractiveness in a rational recursive equation. Dyn. Syst. Appl., 11: 339–345. |
Библиографическая ссылка |
Li, W.T., Sun, H.R. and Yan, X.X. 2003. The asymptotic behavior of a higher order delay nonlinear difference equations. Indian J. Pure Appl. Math., 34: 1431–1441. |
Библиографическая ссылка |
Stević, S. 2002. Asymptotic behaviour of a sequence defined by iteration with applications. Colloq. Math., 93(2): 267–276. |
Библиографическая ссылка |
Stević, S. 2002. On the recursive sequence . Appl. Math. Lett., 15: 305–308. |
Библиографическая ссылка |
Stević, S. 2002. On the recursive sequence . Taiwanese J. Math., 6(3): 405–414. |
Библиографическая ссылка |
Stević, S. 2003. Asymptotic behaviour of a nonlinear difference equation. Indian J. Pure Appl. Math., 34(12): 1681–1687. |
Библиографическая ссылка |
Stević, S. 2003. On the recursive sequence . Taiwanese J. Math., 7(2): 249–259. |
Библиографическая ссылка |
Stević, S. 2004. A note on periodic character of a difference equation. J. Difference Equ. Appl., 10(10): 929–932. |
Библиографическая ссылка |
Stević, S. 2005. On the recursive sequence . Taiwanese J. Math., 9(4): 583–593. |
Библиографическая ссылка |
Stević, S. 2005. On the recursive sequence . J. Appl. Math. Comput., 18(1–2): 229–234. |
Библиографическая ссылка |
Stević, S. 2006. Asymptotic behavior of a class of nonlinear difference equations. Discrete Dyn. Nat. Soc., 2006: 10 Article ID 47156 |
Библиографическая ссылка |
Stević, S. 2006. Global stability and asymptotics of some classes of rational difference equations. J. Math. Anal. Appl., 316: 60–68. |
Библиографическая ссылка |
Stević, S. 2006. On positive solutions of a (k+1)-th order difference equation. Appl. Math. Lett., 19(5): 427–431. |
Библиографическая ссылка |
Stević, S. 2007. Existence of nontrivial solutions of a rational difference equation. Appl. Math. Lett., 20: 28–31. |
Библиографическая ссылка |
Stević, S. 2007. On the recursive sequence . J. Difference Equ. Appl., 13(1): 41–46. |
Библиографическая ссылка |
Sun, T. and Xi, H. 2006. On the global behavior of the nonlinear difference equation . Discrete Dyn. Nat. Soc., 2006: 12 Article ID 90625 |
Библиографическая ссылка |
Takahasi, S.E., Miura, Y. and Miura, T. 2006. On convergence of a recursive sequence . Taiwanese J. Math., 10(3): 631–638. |