Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Hu, Lin-Xia
Автор Li, Wan-Tong
Автор Stević, Stevo
Дата выпуска 2008
dc.description The main goal of the paper is to confirm Conjecture 9.5.5 stated by Kulenović and Ladas in Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures (Chapman & Hall/CRC, Boca Raton, FL, 2002). The boundedness, invariant intervals, semicycles and global attractivity of all nonnegative solutions of the equationare studied, where the parameters and the initial conditions are such that . It is shown that if the equation has no prime period-two solutions, then the unique positive equilibrium of the equation is globally asymptotically stable.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема difference equation
Тема boundedness
Тема invariant interval
Тема semicycle
Тема global attractor
Тема globally asymptotically stable
Тема 39A10
Название Global asymptotic stability of a second order rational difference equation
Тип research-article
DOI 10.1080/10236190701827945
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 14
Первая страница 779
Последняя страница 797
Аффилиация Hu, Lin-Xia; Department of Mathematics, Tianshui Normal University
Аффилиация , ; School of Mathematics and Statistics, Lanzhou University
Аффилиация Li, Wan-Tong; School of Mathematics and Statistics, Lanzhou University
Аффилиация Stević, Stevo; Mathematical Institute of the Serbian Academy of Science
Выпуск 8
Библиографическая ссылка Agarwal, R.P., Li, W.T. and Pang, P.Y.H. 2002. Asymptotic behavior of a class of nonlinear delay difference equations. J. Difference Equ. Appl., 8: 719–728.
Библиографическая ссылка Amleh, A.M., Camouzus, E. and Ladas, G. 2006. On the boundedness character of rational equations, part 2. J. Difference Equ. Appl., 12(6): 637–650.
Библиографическая ссылка Berenhaut, K.S., Foley, J.D. and Stević, S. 2006. Quantitative bound for the recursive sequence . Appl. Math. Lett., 19(9): 983–989.
Библиографическая ссылка Berenhaut, K.S., Foley, J.D. and Stević, S. 2007. The global attractivity of the rational difference equation . Proc. Amer. Math. Soc., 135: 1133–1140.
Библиографическая ссылка Berenhaut, K.S. and Stević, S. 2005. A note on the difference equation . J. Difference Equ. Appl., 11(14): 1225–1228.
Библиографическая ссылка Berenhaut, K. and Stević, S. 2006. A note on positive nonoscillatory solutions of the difference equation . J. Difference Equ. Appl., 12(5): 495–499.
Библиографическая ссылка Berenhaut, K. and Stević, S. 2006. The behaviour of the positive solutions of the difference equation . J. Difference Equ. Appl., 12(9): 909–918.
Библиографическая ссылка Berenhaut, K. and Stević, S. 2007. The difference equation has solutions converging to zero. J. Math. Anal. Appl., 326: 1466–1471.
Библиографическая ссылка Berg, L. 2002. On the asymptotics of nonlinear difference equations. Z. Anal. Anwend., 21(4): 1061–1074.
Библиографическая ссылка Grove, E.A., Kent, G.M., Levins, R., Ladas, G. and Valicenti, S. 2000. “Global stability in some population models”. In Proceedings of the Fourth International Conference on Difference Equations and Applications, 149–176. Poznan, Poland: Gordon and Breach Science Publishers. August 27–31, 1998
Библиографическая ссылка Hautus, M.L.J. and Bolis, T.S. 1979. Solution to problem E2721. Amer. Math. Monthly, 86: 865–866.
Библиографическая ссылка Iričanin, B. 2007. A global convergence result for a higher-order difference equation. Discrete Dyn. Nat. Soc., (2007): 7 Article ID 91292
Библиографическая ссылка Karakostas, G. and Stević, S. 2004. On the recursive sequence . J. Difference Equ. Appl., 10(9): 809–815.
Библиографическая ссылка Kocic, V.L. and Ladas, G. 1993. Global Behavior of Nonlinear Difference Equations of Higher Order with Application, Dordrecht: Kluwer Academic Publishers.
Библиографическая ссылка Kocic, V.L., Ladas, G. and Rodrigues, I.W. 1993. On rational recursives. J. Math. Anal. Appl., 173: 127–157.
Библиографическая ссылка Kulenović, M.R. and Ladas, G. 2002. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Boca Raton: Chapman Hall/CRC.
Библиографическая ссылка Li, W.T. and Sun, H.R. 2002. Global attractiveness in a rational recursive equation. Dyn. Syst. Appl., 11: 339–345.
Библиографическая ссылка Li, W.T., Sun, H.R. and Yan, X.X. 2003. The asymptotic behavior of a higher order delay nonlinear difference equations. Indian J. Pure Appl. Math., 34: 1431–1441.
Библиографическая ссылка Stević, S. 2002. Asymptotic behaviour of a sequence defined by iteration with applications. Colloq. Math., 93(2): 267–276.
Библиографическая ссылка Stević, S. 2002. On the recursive sequence . Appl. Math. Lett., 15: 305–308.
Библиографическая ссылка Stević, S. 2002. On the recursive sequence . Taiwanese J. Math., 6(3): 405–414.
Библиографическая ссылка Stević, S. 2003. Asymptotic behaviour of a nonlinear difference equation. Indian J. Pure Appl. Math., 34(12): 1681–1687.
Библиографическая ссылка Stević, S. 2003. On the recursive sequence . Taiwanese J. Math., 7(2): 249–259.
Библиографическая ссылка Stević, S. 2004. A note on periodic character of a difference equation. J. Difference Equ. Appl., 10(10): 929–932.
Библиографическая ссылка Stević, S. 2005. On the recursive sequence . Taiwanese J. Math., 9(4): 583–593.
Библиографическая ссылка Stević, S. 2005. On the recursive sequence . J. Appl. Math. Comput., 18(1–2): 229–234.
Библиографическая ссылка Stević, S. 2006. Asymptotic behavior of a class of nonlinear difference equations. Discrete Dyn. Nat. Soc., 2006: 10 Article ID 47156
Библиографическая ссылка Stević, S. 2006. Global stability and asymptotics of some classes of rational difference equations. J. Math. Anal. Appl., 316: 60–68.
Библиографическая ссылка Stević, S. 2006. On positive solutions of a (k+1)-th order difference equation. Appl. Math. Lett., 19(5): 427–431.
Библиографическая ссылка Stević, S. 2007. Existence of nontrivial solutions of a rational difference equation. Appl. Math. Lett., 20: 28–31.
Библиографическая ссылка Stević, S. 2007. On the recursive sequence . J. Difference Equ. Appl., 13(1): 41–46.
Библиографическая ссылка Sun, T. and Xi, H. 2006. On the global behavior of the nonlinear difference equation . Discrete Dyn. Nat. Soc., 2006: 12 Article ID 90625
Библиографическая ссылка Takahasi, S.E., Miura, Y. and Miura, T. 2006. On convergence of a recursive sequence . Taiwanese J. Math., 10(3): 631–638.

Скрыть метаданые