Автор |
Singh, Vimal |
Дата выпуска |
2008 |
dc.description |
Using Lyapunov's direct method, a novel frequency-domain criterion for the elimination of limit cycles in a class of digital filters using single saturation nonlinearity is derived. The criterion turns out to be a generalization and improvement over an earlier criterion due to Kar and Singh. An example showing the effectiveness of the criterion is given. A graphical interpretation of a simplified version (involving one free parameter) of the criterion is discussed. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
asymptotic stability |
Тема |
difference equations |
Тема |
discrete-time dynamical systems |
Тема |
limit cycles |
Тема |
nonlinear difference equations |
Тема |
nonlinear systems |
Тема |
39A10 |
Тема |
39A11 |
Тема |
93C10 |
Тема |
93C55 |
Тема |
93C62 |
Название |
Elimination of limit cycles in a class of digital filters using single saturation nonlinearity |
Тип |
research-article |
DOI |
10.1080/10236190801943212 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
14 |
Первая страница |
1255 |
Последняя страница |
1265 |
Аффилиация |
Singh, Vimal; Department of Electrical-Electronics Engineering, Atilim University |
Выпуск |
12 |
Библиографическая ссылка |
Bhaya, E.A. and Kaszkurewicz, E. 1993. On discrete-time diagonal and D-stability. Linear Algebra Appl., 187: 87–104. |
Библиографическая ссылка |
Butterweck, H.J., Ritzerfeld, J.H.F. and Werter, M.J. 1988. Finite Wordlength Effects in Digital Filters: A Review, Eindhoven, The Netherlands: Eindhoven University of Technology. EUT Report 88-E-205 |
Библиографическая ссылка |
Classen, T.A.C.M., Mecklenbräuker, W.F.G. and Peek, J.B.H. 1975. Frequency domain criteria for the absence of zero-input limit cycles in nonlinear discrete-time systems, with application to digital filters. IEEE Trans. Circuits Syst., 22: 232–239. |
Библиографическая ссылка |
Classen, T.A.C.M., Mecklenbräuker, W.F.G. and Peek, J.B.H. 1976. Effects of quantization and overflow in recursive digital filters. IEEE Trans. Acoust. Speech Signal Process., 24: 517–529. |
Библиографическая ссылка |
Ebert, P.M., Mazo, J.E. and Taylor, M.G. 1969. Overflow oscillations in recursive digital filters. Bell Syst. Tech. J., 48: 2999–3020. |
Библиографическая ссылка |
Haddad, W.M. and Bernstein, D.S. 1994. Parameter-dependent Lyapunov functions and the discrete-time Popov criterion for robust analysis. Automatica, 30: 1015–1021. |
Библиографическая ссылка |
Jury, E.I. and Lee, B.W. 1964. On the stability of a certain class of nonlinear sampled-data systems. IEEE Trans. Automat. Control, 9: 51–61. |
Библиографическая ссылка |
Kapila, V. and Haddad, W.M. 1996. A multivariable extension of the Tsypkin criterion using a Lyapunov function approach. IEEE Trans. Automat. Control, 41: 149–152. |
Библиографическая ссылка |
Kar, H. and Singh, V. 1998. A new criterion for the overflow stability of second-order state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. I, 45: 311–313. |
Библиографическая ссылка |
Kar, H. and Singh, V. 2001. Stability analysis of 1-D and 2-D fixed-point state-space digital filters using any combination of overflow and quantization. IEEE Trans. Signal Process., 49: 1097–1105. |
Библиографическая ссылка |
Kar, H. and Singh, V. 2005. Elimination of overflow oscillations in digital filters employing saturation arithmetic. Digital Signal Process., 15: 536–544. |
Библиографическая ссылка |
Mills, W.L., Mullis, C.T. and Roberts, R.A. 1978. Digital filter realizations without overflow oscillations. IEEE Trans. Acoust. Speech Signal Process., 26: 334–338. |
Библиографическая ссылка |
Mitra, D. 1978. The absolute stability of high-order discrete-time systems utilizing the saturation nonlinearity. IEEE Trans. Circuits Syst., 25: 365–371. |
Библиографическая ссылка |
Park, P. and Kim, S.W. 1998. A revisited Tsypkin criterion for discrete-time nonlinear Lur'e systems with monotonic sector restrictions. Automatica, 34: 1417–1420. |
Библиографическая ссылка |
Premaratne, K. and Jury, E.I. 1994. Discrete-time positive-real lemma revisited: The discrete-time counterpart of the Kalman–Yakubovitch lemma. IEEE Trans. Circuits Syst. I, 41: 747–750. |
Библиографическая ссылка |
Regalia, P.A. 1992. On finite precision Lyapunov functions for companion matrices. IEEE Trans. Automat. Control, 37: 1640–1644. |
Библиографическая ссылка |
Ritzerfeld, J.H.F. 1989. A condition for the overflow stability of second-order digital filters that is satisfied by all scaled state-space structures using saturation. IEEE Trans. Circuits Syst., 36: 1049–1057. |
Библиографическая ссылка |
Singh, V. 1984. A stability inequality for nonlinear discrete-time systems with slope-restricted nonlinearity. IEEE Trans. Circuits Syst., 31: 1058–1060. |
Библиографическая ссылка |
Singh, V. 1985. Lyapunov-based proof of Jury–Lee's criterion: Some appraisals. IEEE Trans. Circuits Syst., 32: 396–398. |
Библиографическая ссылка |
Singh, V. 1985. A new realizability condition for limit cycle-free state-space digital filters employing saturation arithmetic. IEEE Trans. Circuits Syst., 32: 1070–1071. |
Библиографическая ссылка |
Singh, V. 1986. Realization of two's complement overflow limit cycle free state-space digital filters: A frequency-domain viewpoint. IEEE Trans. Circuits Syst., 33: 1042–1044. |
Библиографическая ссылка |
Singh, V. 1990. A generalized approach for the absolute stability of discrete-time systems utilizing the saturation nonlinearity, based on passivity properties. IEEE Trans. Circuits Syst., 37: 444–447. |
Библиографическая ссылка |
Singh, V. 1990. Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst., 37: 814–818. |
Библиографическая ссылка |
Singh, V. 2006. Modified form of Liu–Michel's criterion for global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. II, 53: 1423–1425. |
Библиографическая ссылка |
Sharma, T.N. and Singh, V. 1981. On the stability of multivariable discrete-time nonlinear systems. IEEE Trans. Automat. Control, 26: 585–586. |
Библиографическая ссылка |
Tsypkin, Y.Z. 1964. A criterion for absolute stability of automatic pulse systems with monotonic characteristics of the nonlinear element. Dokl. Akad. Nauk., 115: 1029–1032. (USSR) |
Библиографическая ссылка |
Wimmer, H.K. 1998. Diagonal matrix solutions of a discrete-time Lyapunov inequality. IEEE Trans. Automat. Control, 43: 442–445. |