Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Stehlik, Petr
Автор Thompson, Bevan
Дата выпуска 2010
dc.description We apply the strong maximum principle to obtain a priori bounds and uniqueness of solutions for some initial value and boundary value problems as well as to establish oscillation results for second-order dynamic equations on time scales. Our comparison, uniqueness, and oscillation results are new and are extensions of results for ordinary differential equations to the times scale setting.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема maximum principles on time scales
Тема non-linear comparison results
Тема boundary point lemma
Тема 34B15
Тема 39A10
Тема 34B10
Название Applications of maximum principles to dynamic equations on time scales
Тип research-article
DOI 10.1080/10236190802425227
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 16
Первая страница 373
Последняя страница 388
Аффилиация Stehlik, Petr; Department of Mathematics, University of West Bohemia
Аффилиация Thompson, Bevan; Department of Mathematics, SPS, The University of Queensland
Выпуск 4
Библиографическая ссылка Agarwal, R.P. 2000. Difference Equations and Inequalities, 2nd ed., Vol. 228, New York, NY: Dekker. Pure Appl. Math.
Библиографическая ссылка Agarwal, R.P., Bohner, M., Grace, S.R. and O'Regan, D. 2005. Discrete Oscillation Theory, New York, NY: Hindawi.
Библиографическая ссылка Bohner, M. and Peterson, A. 2001. Dynamic Equations on Time Scales. An Introduction with Applications, Boston, MA: Birkhäuser Boston Inc..
Библиографическая ссылка Bohner, M. and Peterson, A., eds. 2003. Advances in Dynamic Equations on Time Scales, Boston, MA: Birkhäuser Boston Inc..
Библиографическая ссылка Cheng, S.S. 2003. Partial Difference Equations, London: Taylor & Francis.
Библиографическая ссылка De Coster, C. and Habets, P. 2004. “The lower and upper solutions method for boundary value problems”. In Handbook on Differential Equations, 1, Ordinary Differential Equations, Edited by: Canada, A., Drabek, P. and Fonder, A. 69–160. Amsterdam: Elsevier B.V..
Библиографическая ссылка Drábek, P., Henderson, J. and Tisdell, C.C. 2004. Multiple solutions to dynamic equations on time scales. Commun. Appl. Nonlinear Anal., 11(4): 25–42.
Библиографическая ссылка Henderson, J. and Thompson, H.B. 2002. Existence of multiple solutions for discrete boundary value problems. Comput. Math. Appl., 43: 1239–1248.
Библиографическая ссылка Thompson, H.B. 2000. Multiple symmetric positive solutions for a second order boundary value problem. Proc. Amer. Math. Soc., 128: 2373–2379.
Библиографическая ссылка Thompson, H.B. 2000. Existence of multiple solutions for second order boundary value problems. J. Differ. Equations, 166: 443–454.
Библиографическая ссылка Thompson, H.B. 2003. Existence of multiple solutions for finite difference approximations to second order boundary value problems. Nonlinear Anal., 53: 97–110.
Библиографическая ссылка Hilger, S. 1990. Analysis on measure chains — a unified approach to continuous and discrete calculus. Results Math., 18(1/2): 18–56.
Библиографическая ссылка Mawhin, J., Tonkes, E. and Thompson, H.B. 2004. Uniqueness for boundary value problems for second order finite difference equations. J. Differ. Equations Appl., 10: 749–757.
Библиографическая ссылка Protter, M.H. and Weinberger, H.F. 1967. Maximum Principles in Differential Equations, New Jersey: Prentice-Hall.
Библиографическая ссылка Stehlík, P. and Thompson, H.B. 2007. Maximum principles for second order dynamic equations on time scales. J. Math. Anal. Appl., 53: 913–926.
Библиографическая ссылка Thompson, H.B. 2001. Topological methods for some boundary value problems. Comput. Math. Appl., 42: 487–495.

Скрыть метаданые