Автор |
Stehlik, Petr |
Автор |
Thompson, Bevan |
Дата выпуска |
2010 |
dc.description |
We apply the strong maximum principle to obtain a priori bounds and uniqueness of solutions for some initial value and boundary value problems as well as to establish oscillation results for second-order dynamic equations on time scales. Our comparison, uniqueness, and oscillation results are new and are extensions of results for ordinary differential equations to the times scale setting. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
maximum principles on time scales |
Тема |
non-linear comparison results |
Тема |
boundary point lemma |
Тема |
34B15 |
Тема |
39A10 |
Тема |
34B10 |
Название |
Applications of maximum principles to dynamic equations on time scales |
Тип |
research-article |
DOI |
10.1080/10236190802425227 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
16 |
Первая страница |
373 |
Последняя страница |
388 |
Аффилиация |
Stehlik, Petr; Department of Mathematics, University of West Bohemia |
Аффилиация |
Thompson, Bevan; Department of Mathematics, SPS, The University of Queensland |
Выпуск |
4 |
Библиографическая ссылка |
Agarwal, R.P. 2000. Difference Equations and Inequalities, 2nd ed., Vol. 228, New York, NY: Dekker. Pure Appl. Math. |
Библиографическая ссылка |
Agarwal, R.P., Bohner, M., Grace, S.R. and O'Regan, D. 2005. Discrete Oscillation Theory, New York, NY: Hindawi. |
Библиографическая ссылка |
Bohner, M. and Peterson, A. 2001. Dynamic Equations on Time Scales. An Introduction with Applications, Boston, MA: Birkhäuser Boston Inc.. |
Библиографическая ссылка |
Bohner, M. and Peterson, A., eds. 2003. Advances in Dynamic Equations on Time Scales, Boston, MA: Birkhäuser Boston Inc.. |
Библиографическая ссылка |
Cheng, S.S. 2003. Partial Difference Equations, London: Taylor & Francis. |
Библиографическая ссылка |
De Coster, C. and Habets, P. 2004. “The lower and upper solutions method for boundary value problems”. In Handbook on Differential Equations, 1, Ordinary Differential Equations, Edited by: Canada, A., Drabek, P. and Fonder, A. 69–160. Amsterdam: Elsevier B.V.. |
Библиографическая ссылка |
Drábek, P., Henderson, J. and Tisdell, C.C. 2004. Multiple solutions to dynamic equations on time scales. Commun. Appl. Nonlinear Anal., 11(4): 25–42. |
Библиографическая ссылка |
Henderson, J. and Thompson, H.B. 2002. Existence of multiple solutions for discrete boundary value problems. Comput. Math. Appl., 43: 1239–1248. |
Библиографическая ссылка |
Thompson, H.B. 2000. Multiple symmetric positive solutions for a second order boundary value problem. Proc. Amer. Math. Soc., 128: 2373–2379. |
Библиографическая ссылка |
Thompson, H.B. 2000. Existence of multiple solutions for second order boundary value problems. J. Differ. Equations, 166: 443–454. |
Библиографическая ссылка |
Thompson, H.B. 2003. Existence of multiple solutions for finite difference approximations to second order boundary value problems. Nonlinear Anal., 53: 97–110. |
Библиографическая ссылка |
Hilger, S. 1990. Analysis on measure chains — a unified approach to continuous and discrete calculus. Results Math., 18(1/2): 18–56. |
Библиографическая ссылка |
Mawhin, J., Tonkes, E. and Thompson, H.B. 2004. Uniqueness for boundary value problems for second order finite difference equations. J. Differ. Equations Appl., 10: 749–757. |
Библиографическая ссылка |
Protter, M.H. and Weinberger, H.F. 1967. Maximum Principles in Differential Equations, New Jersey: Prentice-Hall. |
Библиографическая ссылка |
Stehlík, P. and Thompson, H.B. 2007. Maximum principles for second order dynamic equations on time scales. J. Math. Anal. Appl., 53: 913–926. |
Библиографическая ссылка |
Thompson, H.B. 2001. Topological methods for some boundary value problems. Comput. Math. Appl., 42: 487–495. |