Автор |
Berenhaut, Kenneth S. |
Автор |
Guy, Richard T. |
Дата выпуска |
2010 |
dc.description |
In this paper, we study periodicity and boundedness for the integer solutions to a minimum-delay difference equations. As an application, a recent theorem regarding absolute-difference equations is extended. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
minimum-delay difference equations |
Тема |
piecewise difference equations |
Тема |
periodicity |
Тема |
recursive equation |
Тема |
composition-delay equations |
Тема |
growth rates |
Тема |
39A10 |
Тема |
39A11 |
Название |
Periodicity and boundedness for the integer solutions to a minimum-delay difference equation |
Тип |
research-article |
DOI |
10.1080/10236190802566533 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
16 |
Первая страница |
895 |
Последняя страница |
916 |
Аффилиация |
Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University |
Аффилиация |
Guy, Richard T.; Department of Mathematics, Wake Forest University |
Выпуск |
8 |
Библиографическая ссылка |
Amleh, A.M., Hoag, J. and Ladas, G. 1998. A difference equation with eventually periodic solutions. Advances in difference equations, II. Comput. Math. Appl., 36(10–12): 401–404. |
Библиографическая ссылка |
Amleh, A.M., Grove, E.A., Kent, C.M. and Ladas, G. 1998. On some difference equations with eventually periodic solutions. J. Math. Anal. Appl., 223: 196–215. |
Библиографическая ссылка |
Berenhaut, K.S., Foley, J.D. and Stevic, S. 2007. The global attractivity of the rational difference equation . Proc. Amer. Math. Soc., 135(4): 1133–1140. |
Библиографическая ссылка |
Bidwell, J. and Franke, J.E. 2008. Bounded implies eventually periodic for the positive case of reciprocal-max difference equation with periodic parameters. J. Difference Equ. Appl., 14(3): 321–326. |
Библиографическая ссылка |
Charalambides, Ch.A. 2002. Enumerative Combinatorics, Boca Raton, FL: Chapman & Hall/CRC Press. |
Библиографическая ссылка |
Clark, D. and Lewis, J. 1995. A Collatz-type difference equation. Congressus Numericatium, 3: 129–135. |
Библиографическая ссылка |
Everest, G., van der Poorten, A., Shparlinski, I. and Ward, T. 2003. Recurrence Sequences, Amer. Math. Soc. Surveys and Monographs vol. 104, Providence, RI |
Библиографическая ссылка |
Feuer, J. 2004. Two classes of piecewise-linear difference equations with eventual periodicity six. J. Math. Anal. Appl., 295(2): 570–575. |
Библиографическая ссылка |
Feuer, J. 2006. On the eventual periodicity of with a period-four parameter. J. Difference Equ. Appl., 12(5): 467–486. |
Библиографическая ссылка |
Feuer, J. 2007. Two classes of piecewise-linear difference equations with eventual periodicity three. J. Math. Anal. Appl., 332(1): 564–569. |
Библиографическая ссылка |
Feuer, J. and Ladas, G. 2004. Open problems and conjectures. J. Difference Equ. Appl., 10: 447–451. |
Библиографическая ссылка |
Grove, E.A. and Ladas, G. 2004. Periodicities in Nonlinear Difference equations, Boca Raton, FL: Chapman & Hall/CRC Press. |
Библиографическая ссылка |
Joshi, K.D. 1989. Foundations of Discrete Mathematics, New York, NY: John Wiley & Sons, Inc.. |
Библиографическая ссылка |
Kent, C.M. and Sedaghat, H. 2004. Convergence, periodicity and bifurcations for the 2-parameter absolute difference equation. J. Difference Equ. Appl., 10: 817–841. |
Библиографическая ссылка |
Kent, C.M. and Sedaghat, H. 2005. Difference equations with absolute values. J. Difference Equ. Appl., 11(7): 677–686. |
Библиографическая ссылка |
Lagarias, J.C. 1985. The 3x+1 problem and its generalizations. Amer. Math. Monthly, 92: 3–21. |
Библиографическая ссылка |
Liu, Y. and Li, Z. 2005. Periodic character of a difference equation with maximum. Ann. Differential equations, 21(3): 362–365. |
Библиографическая ссылка |
Mishev, D.P., Patula, W.T. and Voulov, H.D. 2002. A reciprocal difference equation with maximum. Comput. Math. Appl., 43(8–9): 1021–1026. |
Библиографическая ссылка |
Patula, W.T. and Voulov, H.D. 2003. On the oscillation and periodic character of a third order rational difference equation. Proc. Amer. Math. Soc., 131(3): 905–909. |
Библиографическая ссылка |
Rosen, K.H., Michaels, J.G., Gross, J.L., Grossman, J.W. and Shier, D.R. 2000. Handbook of Discrete and Combinatorial Mathematics, New York, NY: CRC. |
Библиографическая ссылка |
Sedaghat, H. 2004. Periodicity and convergence for . J. Math. Anal. Appl., 291: 31–39. |
Библиографическая ссылка |
Sun, T. and Xi, H. 2008. The periodic character of the difference equation . Adv. Difference Equ., 2008: 1–6. Article ID 143723 |
Библиографическая ссылка |
Voulov, H.D. 2003. Periodic solutions to a difference equation with maximum. Proc. Amer. Math. Soc., 131(7): 2155–2160. |
Библиографическая ссылка |
Voulov, H.D. 2004. On the periodic nature of the solutions of the reciprocal difference equation with maximum. J. Math. Anal. Appl., 296(1): 32–43. |
Библиографическая ссылка |
Wirsching, G.J. 2000. Über das Problem. Elem. Math., 55(4): 142–155. |