Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Berenhaut, Kenneth S.
Автор Guy, Richard T.
Дата выпуска 2010
dc.description In this paper, we study periodicity and boundedness for the integer solutions to a minimum-delay difference equations. As an application, a recent theorem regarding absolute-difference equations is extended.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема minimum-delay difference equations
Тема piecewise difference equations
Тема periodicity
Тема recursive equation
Тема composition-delay equations
Тема growth rates
Тема 39A10
Тема 39A11
Название Periodicity and boundedness for the integer solutions to a minimum-delay difference equation
Тип research-article
DOI 10.1080/10236190802566533
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 16
Первая страница 895
Последняя страница 916
Аффилиация Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University
Аффилиация Guy, Richard T.; Department of Mathematics, Wake Forest University
Выпуск 8
Библиографическая ссылка Amleh, A.M., Hoag, J. and Ladas, G. 1998. A difference equation with eventually periodic solutions. Advances in difference equations, II. Comput. Math. Appl., 36(10–12): 401–404.
Библиографическая ссылка Amleh, A.M., Grove, E.A., Kent, C.M. and Ladas, G. 1998. On some difference equations with eventually periodic solutions. J. Math. Anal. Appl., 223: 196–215.
Библиографическая ссылка Berenhaut, K.S., Foley, J.D. and Stevic, S. 2007. The global attractivity of the rational difference equation . Proc. Amer. Math. Soc., 135(4): 1133–1140.
Библиографическая ссылка Bidwell, J. and Franke, J.E. 2008. Bounded implies eventually periodic for the positive case of reciprocal-max difference equation with periodic parameters. J. Difference Equ. Appl., 14(3): 321–326.
Библиографическая ссылка Charalambides, Ch.A. 2002. Enumerative Combinatorics, Boca Raton, FL: Chapman & Hall/CRC Press.
Библиографическая ссылка Clark, D. and Lewis, J. 1995. A Collatz-type difference equation. Congressus Numericatium, 3: 129–135.
Библиографическая ссылка Everest, G., van der Poorten, A., Shparlinski, I. and Ward, T. 2003. Recurrence Sequences, Amer. Math. Soc. Surveys and Monographs vol. 104, Providence, RI
Библиографическая ссылка Feuer, J. 2004. Two classes of piecewise-linear difference equations with eventual periodicity six. J. Math. Anal. Appl., 295(2): 570–575.
Библиографическая ссылка Feuer, J. 2006. On the eventual periodicity of with a period-four parameter. J. Difference Equ. Appl., 12(5): 467–486.
Библиографическая ссылка Feuer, J. 2007. Two classes of piecewise-linear difference equations with eventual periodicity three. J. Math. Anal. Appl., 332(1): 564–569.
Библиографическая ссылка Feuer, J. and Ladas, G. 2004. Open problems and conjectures. J. Difference Equ. Appl., 10: 447–451.
Библиографическая ссылка Grove, E.A. and Ladas, G. 2004. Periodicities in Nonlinear Difference equations, Boca Raton, FL: Chapman & Hall/CRC Press.
Библиографическая ссылка Joshi, K.D. 1989. Foundations of Discrete Mathematics, New York, NY: John Wiley & Sons, Inc..
Библиографическая ссылка Kent, C.M. and Sedaghat, H. 2004. Convergence, periodicity and bifurcations for the 2-parameter absolute difference equation. J. Difference Equ. Appl., 10: 817–841.
Библиографическая ссылка Kent, C.M. and Sedaghat, H. 2005. Difference equations with absolute values. J. Difference Equ. Appl., 11(7): 677–686.
Библиографическая ссылка Lagarias, J.C. 1985. The 3x+1 problem and its generalizations. Amer. Math. Monthly, 92: 3–21.
Библиографическая ссылка Liu, Y. and Li, Z. 2005. Periodic character of a difference equation with maximum. Ann. Differential equations, 21(3): 362–365.
Библиографическая ссылка Mishev, D.P., Patula, W.T. and Voulov, H.D. 2002. A reciprocal difference equation with maximum. Comput. Math. Appl., 43(8–9): 1021–1026.
Библиографическая ссылка Patula, W.T. and Voulov, H.D. 2003. On the oscillation and periodic character of a third order rational difference equation. Proc. Amer. Math. Soc., 131(3): 905–909.
Библиографическая ссылка Rosen, K.H., Michaels, J.G., Gross, J.L., Grossman, J.W. and Shier, D.R. 2000. Handbook of Discrete and Combinatorial Mathematics, New York, NY: CRC.
Библиографическая ссылка Sedaghat, H. 2004. Periodicity and convergence for . J. Math. Anal. Appl., 291: 31–39.
Библиографическая ссылка Sun, T. and Xi, H. 2008. The periodic character of the difference equation . Adv. Difference Equ., 2008: 1–6. Article ID 143723
Библиографическая ссылка Voulov, H.D. 2003. Periodic solutions to a difference equation with maximum. Proc. Amer. Math. Soc., 131(7): 2155–2160.
Библиографическая ссылка Voulov, H.D. 2004. On the periodic nature of the solutions of the reciprocal difference equation with maximum. J. Math. Anal. Appl., 296(1): 32–43.
Библиографическая ссылка Wirsching, G.J. 2000. Über das Problem. Elem. Math., 55(4): 142–155.

Скрыть метаданые