Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Amleh, A.M.
Автор Camouzis, E.
Автор Ladas, G.
Автор Radin, M.A.
Дата выпуска 2010
dc.description We investigate the boundedness character of non-negative solutions of a rational system in the plane. The system contains 10 parameters with non-negative real values and consists of 343 special cases, each with positive parameters. In 342 out of the 343 special cases, we establish easily verifiable necessary and sufficient conditions, explicitly stated in terms of 10 parameters, which determine the boundedness character of solutions of the system. In the remaining special case, we conjecture the boundedness character of solutions. It is interesting to note that this special case can be transformed to the well-known May's Host-Parasitoid model.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема boundedness
Тема global stability
Тема patterns of boundedness
Тема rational equations
Тема rational systems
Тема 39A10
Название Patterns of boundedness of a rational system in the plane
Тип research-article
DOI 10.1080/10236190903325144
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 16
Первая страница 1197
Последняя страница 1236
Аффилиация Amleh, A.M.; Department of Mathematics, Wilfrid Laurier University
Аффилиация Camouzis, E.; Department of Mathematics and Natural Science, The American College of Greece
Аффилиация Ladas, G.; Department of Mathematics, University of Rhode Island
Аффилиация Radin, M.A.; School of Mathematical Sciences, College of Science, Rochester Institute of Technology
Выпуск 10
Библиографическая ссылка Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On the dynamics of a rational difference equation, part 1. Int. J. Difference Equ., 3: 1–35.
Библиографическая ссылка Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On the dynamics of a rational difference equation, part 2. Int. J. Difference Equ., 3: 195–225.
Библиографическая ссылка Brett, A., Camouzis, E., Lynd, C. and Ladas, G. 2009. On the boundedness character of a rational system. JNMaS,
Библиографическая ссылка Camouzis, E., Drymonis, M. and Ladas, G. 2009. On the global character of the system . Comm. Appl. Nonlinear Anal., 16: 51–64.
Библиографическая ссылка Camouzis, E., Gilbert, A., Heissan, M. and Ladas, G. 2009. On the boundedness character of the system . Commun. Math. Anal.,
Библиографическая ссылка Camouzis, E., Kulenović, M.R.S., Ladas, G. and Merino, O. 2009. Rational systems in the plane. J. Difference Equ. Appl., 15: 303–323.
Библиографическая ссылка Camouzis, E. and Ladas, G. 2007. Periodically forced Pielou's equation. J. Math. Anal. Appl., 333: 117–127.
Библиографическая ссылка Camouzis, E. and Ladas, G. 2008. Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Boca Raton, FL: Chapman & Hall/CRC Press.
Библиографическая ссылка Camouzis, E. and Ladas, G. 2009. Global results on rational systems in the plane, I. J. Difference Equ. Appl.,
Библиографическая ссылка Camouzis, E., Ladas, G. and Wu, L. 2009. On the global character of the system . Int. J. Pure Appl. Math., 53: 21–36.
Библиографическая ссылка Cushing, J.M., Levarge, S., Chitnis, N. and Henson, M. 2004. Some discrete competition models and the competitive exclusion principle. J. Difference Equ. Appl., 10: 1139–1152.
Библиографическая ссылка Kocic, V.L. and Ladas, G. 1993. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Dordrecht: Kluwer Academic Publishers.
Библиографическая ссылка Kuruklis, S.A. and Ladas, G. 1992. Oscillation and global attractivity in a discrete delay logistic model. Quart. Appl. Math., L: 227–233.
Библиографическая ссылка Kulenović, M.R.S. and Merino, O. 2006. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete Contin. Dyn. Syst. Ser. B, 6: 1141–1156.
Библиографическая ссылка Ladas, G. 1995. Open problems and conjectures. J. Difference Equ. Appl., 1(4): 413–419.
Библиографическая ссылка Ladas, G., Tzanetopoulos, G. and Tovbis, A. 1996. On May's host parasitoid model. J. Difference Equ. Appl., 2: 2195–2204.
Библиографическая ссылка May, R.M. 1978. Host-Parasitoid system in patchy environments. A phenomenological model. J. Anim. Ecol., 47: 833–843.
Библиографическая ссылка Pielou, E.C. 1969. An Introduction to Mathematical Ecology, New York: Wiley-Interscience.
Библиографическая ссылка Pielou, E.C. 1974. Population and Community Ecology, New York: Gordon & Breach.

Скрыть метаданые