Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Liz, Eduardo
Дата выпуска 2011
dc.description We address the stability properties in a non-autonomous difference equationwhere f is continuous, and the zero solution is assumed to be the unique equilibrium. We focus our discussion on two techniques motivated by stability results for functional differential equations (FDEs) that proved recently to be useful in the frame of difference equations too. The first one involves the use of discrete inequalities and monotonicity arguments, and it is inspired by the so-called Halanay inequality; the second one is based on the well-known 3/2 stability results for FDEs. We give further insight into the simple ideas that are behind these methods, prove some new results and show applications and open problems.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема difference equations
Тема exponential stability
Тема asymptotic stability
Тема discrete Halanay-type inequalities
Тема monotone maps
Тема 39A10
Тема 39A11
Тема 47H07
Название Stability of non-autonomous difference equations: simple ideas leading to useful results
Тип research-article
DOI 10.1080/10236198.2010.549007
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 17
Первая страница 203
Последняя страница 220
Аффилиация Liz, Eduardo; Departamento de Matemática Aplicada II, E.T.S.E. Telecomunicación, Universidade de Vigo
Выпуск 2
Библиографическая ссылка Agarwal, R.P. 2000. Difference equations and Inequalities. Theory, Methods, and Applications, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics Vol. 228, New York: Marcel Dekker, Inc..
Библиографическая ссылка Agarwal, R.P., Kim, Y. and Sen, S.K. 2008. New discrete Halanay inequalities: Stability of difference equations. Commun. Appl. Anal., 12: 83–90.
Библиографическая ссылка Baker, C.T.H. and Buckwar, E. 2005. Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations. J. Comput. Appl. Math., 184: 404–427.
Библиографическая ссылка Bay, N.S. and Phat, V.N. 2003. Stability analysis of nonlinear retarded difference equations in Banach spaces. Comput. Math. Appl., 45: 951–960.
Библиографическая ссылка Berezansky, L., Braverman, E. and Liz, E. E. 2005. Sufficient conditions for the global exponential stability of nonautonomous higher order difference equations. J. Differ. Equat. Appl., 11: 785–798.
Библиографическая ссылка Braverman, E. and Saker, S.H. 2010. Periodic solutions and global attractivity of a discrete delay host macroparasite model. J. Differ. Equat. Appl., 16: 789–806.
Библиографическая ссылка Cooke, K. 1994. I. Győri, Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments, Comput. Math. Appl., 28: 81–92.
Библиографическая ссылка Csörnyei, M. 2001. M. Laczkovich, Some periodic and non-periodic recursions, Monatsh. Math., 132: 215–236.
Библиографическая ссылка Cull, P., Flahive, M. and Robson, R. 2005. Difference equations. From rabbits to chaos, New York: Springer.
Библиографическая ссылка Elaydi, S. 2005. An introduction to difference equations, 3rd ed., New York: Springer Verlag.
Библиографическая ссылка El-Morshedy, H.A. 2007. New explicit global asymptotic stability criteria for higher order difference equations. J. Math. Anal. Appl., 336: 262–276.
Библиографическая ссылка Erbe, L.H., Xia, H. and Yu, S. 1995. Global stability of a linear nonautonomous delay difference equation. J. Differ. Equat. Appl., 1: 151–161.
Библиографическая ссылка Ey, K. 2008. C. Pötzsche, Asymptotic behavior of recursions via fixed point theory, J. Math. Anal. Appl., 337: 1125–1141.
Библиографическая ссылка Gandolfo, G. 1980. Economic dynamics: methods and models, 2nd ed., Advanced Textbooks in Economics Vol. 16, Amsterdam/New York: North-Holland.
Библиографическая ссылка Győri, I. 1991. On approximation of the solutions of delay differential equations by using piecewise constant arguments. Int. J. Math. Math. Sci., 14: 111–126.
Библиографическая ссылка Győri, I. and Hartung, F. 2001. “Stability in delay perturbed differential and difference equations”. In Topics in functional differential and difference equations, Fields Inst. Commun Edited by: Faria, T. and Freitas, P. Vol. 29, 181–194. Amer. Math. Soc., Providence, RI
Библиографическая ссылка Győri, I. and Pituk, M. 1996. Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynam. Syst. Appl., 5: 277–302.
Библиографическая ссылка Halanay, A. 1966. Differential equations: Stability, oscillations, time lags, New York: Academic Press.
Библиографическая ссылка Ivanov, A., Liz, E. and Trofimchuk, S. 2002. Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tohoku Math. J., 54: 277–295.
Библиографическая ссылка Kipnis, M. and Komissarova, D. 2006. Stability of a delay difference system. Adv. Difference Equ., : 9 Art. ID 31409
Библиографическая ссылка Kipnis, M. 2007. D. Komissarova, A note on explicit stability conditions for autonomous higher order difference equations, J. Difference Equ. Appl., 13: 457–461.
Библиографическая ссылка Kloeden, P.E. and Rubinov, A.M. 2000. A generalization of the Perron-Frobenius theorem. Nonlinear Anal., 41: 97–115.
Библиографическая ссылка Kocić, V.L. and Ladas, G. 1993. Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications Vol. 256, Dordrecht: Kluwer Academic Publishers Group.
Библиографическая ссылка Krause, U. 2001. The asymptotic behavior of monotone difference equations of higher order. Comput. Math. Appl., 42: 647–654.
Библиографическая ссылка Krause, U. and Pituk, M. 2004. Boundedness and stability for higher order difference equations. J. Differ. Equat Appl., 10: 343–356.
Библиографическая ссылка Krisztin, T. 1991. On stability properties for one-dimensional functional differential equations. Funkcial. Ekvac., 34: 241–256.
Библиографическая ссылка Leung, A.Y.T., Xu, J.N. and Tsui, S. 2007. Nonlinear delay difference equations for housing dynamics assuming heterogeneous backward-looking expectations. Appl. Math. Mech. (English Ed.), 28: 785–798.
Библиографическая ссылка Levin, S.A. 1976. R. May, A note on difference delay equations, Theor. Pop. Biol., 9: 178–187.
Библиографическая ссылка Liu, B.Y. and Gui, H. 2005. Robust output feedback control for uncertain discrete systems with time delays. Acta Automat. Sinica, 31: 804–807.
Библиографическая ссылка Liz, E. 2005. On explicit conditions for the asymptotic stability of linear higher order difference equations. J. Math. Anal. Appl., 303: 492–498.
Библиографическая ссылка Liz, E. 2007. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete Contin. Dyn. Syst., Ser. B, 7: 191–199.
Библиографическая ссылка Liz, E. 2007. A sharp global stability result for a discrete population model. J. Math. Anal. Appl., 330: 740–743.
Библиографическая ссылка Liz, E. and Ferreiro, B. 2002. A note on the global stability of generalized difference equations. Appl. Math. Lett., 15: 655–659.
Библиографическая ссылка Liz, E., Ivanov, A. and Ferreiro, J.B. 2003. Discrete Halanay-type inequalities and applications. Nonlinear Anal., 55: 669–678.
Библиографическая ссылка Liz, E. and Pituk, M. 2005. Asymptotic estimates and exponential stability for higher order monotone difference equations. Adv. Difference Equ., : 41–55.
Библиографическая ссылка Liz, E., Tkachenko, V. and Trofimchuk, S. 2003. Yorke and Wright 3/2-stability theorems from a unified point of view. Discrete Contin. Dynam. Syst., : 580–589.
Библиографическая ссылка Liz, E., Tkachenko, V. and Trofimchuk, S. 2006. Global stability in discrete population models with delayed-density dependence. Math. Biosci., 199: 26–37.
Библиографическая ссылка Memarbashi, R. 2008. Sufficient conditions for the exponential stability of nonautonomous difference equations. Appl. Math. Lett., 21: 232–235.
Библиографическая ссылка Memarbashi, R. 2008. On the stability of nonautonomous difference equations. J. Difference Equ. Appl., 14: 301–307.
Библиографическая ссылка Mohamad, S. and Gopalsamy, K. 2000. Continuous and discrete Halanay-type inequalities. Bull. Aus. Math. Soc., 61: 371–385.
Библиографическая ссылка Mohamad, S. and Gopalsamy, K. 2003. Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. Math. Comput., 135: 17–38.
Библиографическая ссылка Muroya, Y., Ishiwata, E. and Guglielmi, N. 2007. Global stability for nonlinear difference equations with variable coefficients, J. Math. Anal. Appl., 334: 232–247.
Библиографическая ссылка Muroya, Y., Ishiwata, E. and Guglielmi, N. 2009. New global stability conditions for a class of difference equations. Front. Math. China, 4: 131–154.
Библиографическая ссылка Nenya, O., Tkachenko, V. and Trofimchuk, S. 2008. On sharp conditions for the global stability of a difference equation satisfying the Yorke condition, Ukrainian Math. J., 60: 78–90.
Библиографическая ссылка Qiang, Z. 2008. More relaxed condition for dynamics of discrete time delayed Hopfield neural networks. Chin. Phys. B, 17: 125–128.
Библиографическая ссылка Sedaghat, H. 1998. Geometric stability conditions for higher order difference equations. J. Math. Anal. Appl., 224: 255–272.
Библиографическая ссылка Sedaghat, H. 2003. Nonlinear difference equations. Theory with applications to social science models, Mathematical Modelling: Theory and Applications 15Dordrecht: Kluwer Academic Publishers.
Библиографическая ссылка Stević, S. 2000. Behavior of the positive solutions of the generalized Beddington–Holt equation. Panamer. Math. J., 10: 77–85.
Библиографическая ссылка Tang, X.H. and Jiang, Z. 2007. Asymptotic behavior of Volterra difference equation, J. Difference Equ. Appl., 13: 25–40.
Библиографическая ссылка Tkachenko, V. and Trofimchuk, S. 2005. Global stability in difference equations satisfying the generalized Yorke condition. J. Math. Anal. Appl., 303: 173–187.
Библиографическая ссылка Tkachenko, V. and Trofimchuk, S. 2006. global attractivity criterion for nonlinear non-autonomous difference equations. J. Math. Anal. Appl., 322: 901–912.
Библиографическая ссылка Udpin, S. and Niamsup, P. 2009. New discrete type inequalities and global stability of nonlinear difference equations. Appl. Math. Lett., 22: 856–859.
Библиографическая ссылка Yoneyama, T. 1987. On the 3/2 stability theorem for one-dimensional delay-differential equations. J. Math. Anal. Appl., 125: 161–173.
Библиографическая ссылка Yorke, J.A. 1970. Asymptotic stability for one dimensional differential-delay equations. J. Differential Equat., 7: 189–202.
Библиографическая ссылка Zeng, Z. and Wang, J. 2006. Multiperiodicity of discrete-time delayed neural networks evoked by periodic external inputs. IEEE Trans. Neural Netw., 17: 1141–1151.
Библиографическая ссылка Zhang, Q., Wei, X. and Xu, J. 2007. global exponential stability of discrete-time Hopfield neural networks with variable delays. Discrete Dyn. Nat. Soc., : 9 Art. ID 67675
Библиографическая ссылка Zhou, Z. and Zhang, Q. 1998. Uniform stability of nonlinear difference systems. J. Math. Anal. Appl., 225: 486–500.

Скрыть метаданые