Автор |
Liz, Eduardo |
Дата выпуска |
2011 |
dc.description |
We address the stability properties in a non-autonomous difference equationwhere f is continuous, and the zero solution is assumed to be the unique equilibrium. We focus our discussion on two techniques motivated by stability results for functional differential equations (FDEs) that proved recently to be useful in the frame of difference equations too. The first one involves the use of discrete inequalities and monotonicity arguments, and it is inspired by the so-called Halanay inequality; the second one is based on the well-known 3/2 stability results for FDEs. We give further insight into the simple ideas that are behind these methods, prove some new results and show applications and open problems. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
difference equations |
Тема |
exponential stability |
Тема |
asymptotic stability |
Тема |
discrete Halanay-type inequalities |
Тема |
monotone maps |
Тема |
39A10 |
Тема |
39A11 |
Тема |
47H07 |
Название |
Stability of non-autonomous difference equations: simple ideas leading to useful results |
Тип |
research-article |
DOI |
10.1080/10236198.2010.549007 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
17 |
Первая страница |
203 |
Последняя страница |
220 |
Аффилиация |
Liz, Eduardo; Departamento de Matemática Aplicada II, E.T.S.E. Telecomunicación, Universidade de Vigo |
Выпуск |
2 |
Библиографическая ссылка |
Agarwal, R.P. 2000. Difference equations and Inequalities. Theory, Methods, and Applications, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics Vol. 228, New York: Marcel Dekker, Inc.. |
Библиографическая ссылка |
Agarwal, R.P., Kim, Y. and Sen, S.K. 2008. New discrete Halanay inequalities: Stability of difference equations. Commun. Appl. Anal., 12: 83–90. |
Библиографическая ссылка |
Baker, C.T.H. and Buckwar, E. 2005. Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations. J. Comput. Appl. Math., 184: 404–427. |
Библиографическая ссылка |
Bay, N.S. and Phat, V.N. 2003. Stability analysis of nonlinear retarded difference equations in Banach spaces. Comput. Math. Appl., 45: 951–960. |
Библиографическая ссылка |
Berezansky, L., Braverman, E. and Liz, E. E. 2005. Sufficient conditions for the global exponential stability of nonautonomous higher order difference equations. J. Differ. Equat. Appl., 11: 785–798. |
Библиографическая ссылка |
Braverman, E. and Saker, S.H. 2010. Periodic solutions and global attractivity of a discrete delay host macroparasite model. J. Differ. Equat. Appl., 16: 789–806. |
Библиографическая ссылка |
Cooke, K. 1994. I. Győri, Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments, Comput. Math. Appl., 28: 81–92. |
Библиографическая ссылка |
Csörnyei, M. 2001. M. Laczkovich, Some periodic and non-periodic recursions, Monatsh. Math., 132: 215–236. |
Библиографическая ссылка |
Cull, P., Flahive, M. and Robson, R. 2005. Difference equations. From rabbits to chaos, New York: Springer. |
Библиографическая ссылка |
Elaydi, S. 2005. An introduction to difference equations, 3rd ed., New York: Springer Verlag. |
Библиографическая ссылка |
El-Morshedy, H.A. 2007. New explicit global asymptotic stability criteria for higher order difference equations. J. Math. Anal. Appl., 336: 262–276. |
Библиографическая ссылка |
Erbe, L.H., Xia, H. and Yu, S. 1995. Global stability of a linear nonautonomous delay difference equation. J. Differ. Equat. Appl., 1: 151–161. |
Библиографическая ссылка |
Ey, K. 2008. C. Pötzsche, Asymptotic behavior of recursions via fixed point theory, J. Math. Anal. Appl., 337: 1125–1141. |
Библиографическая ссылка |
Gandolfo, G. 1980. Economic dynamics: methods and models, 2nd ed., Advanced Textbooks in Economics Vol. 16, Amsterdam/New York: North-Holland. |
Библиографическая ссылка |
Győri, I. 1991. On approximation of the solutions of delay differential equations by using piecewise constant arguments. Int. J. Math. Math. Sci., 14: 111–126. |
Библиографическая ссылка |
Győri, I. and Hartung, F. 2001. “Stability in delay perturbed differential and difference equations”. In Topics in functional differential and difference equations, Fields Inst. Commun Edited by: Faria, T. and Freitas, P. Vol. 29, 181–194. Amer. Math. Soc., Providence, RI |
Библиографическая ссылка |
Győri, I. and Pituk, M. 1996. Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynam. Syst. Appl., 5: 277–302. |
Библиографическая ссылка |
Halanay, A. 1966. Differential equations: Stability, oscillations, time lags, New York: Academic Press. |
Библиографическая ссылка |
Ivanov, A., Liz, E. and Trofimchuk, S. 2002. Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tohoku Math. J., 54: 277–295. |
Библиографическая ссылка |
Kipnis, M. and Komissarova, D. 2006. Stability of a delay difference system. Adv. Difference Equ., : 9 Art. ID 31409 |
Библиографическая ссылка |
Kipnis, M. 2007. D. Komissarova, A note on explicit stability conditions for autonomous higher order difference equations, J. Difference Equ. Appl., 13: 457–461. |
Библиографическая ссылка |
Kloeden, P.E. and Rubinov, A.M. 2000. A generalization of the Perron-Frobenius theorem. Nonlinear Anal., 41: 97–115. |
Библиографическая ссылка |
Kocić, V.L. and Ladas, G. 1993. Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications Vol. 256, Dordrecht: Kluwer Academic Publishers Group. |
Библиографическая ссылка |
Krause, U. 2001. The asymptotic behavior of monotone difference equations of higher order. Comput. Math. Appl., 42: 647–654. |
Библиографическая ссылка |
Krause, U. and Pituk, M. 2004. Boundedness and stability for higher order difference equations. J. Differ. Equat Appl., 10: 343–356. |
Библиографическая ссылка |
Krisztin, T. 1991. On stability properties for one-dimensional functional differential equations. Funkcial. Ekvac., 34: 241–256. |
Библиографическая ссылка |
Leung, A.Y.T., Xu, J.N. and Tsui, S. 2007. Nonlinear delay difference equations for housing dynamics assuming heterogeneous backward-looking expectations. Appl. Math. Mech. (English Ed.), 28: 785–798. |
Библиографическая ссылка |
Levin, S.A. 1976. R. May, A note on difference delay equations, Theor. Pop. Biol., 9: 178–187. |
Библиографическая ссылка |
Liu, B.Y. and Gui, H. 2005. Robust output feedback control for uncertain discrete systems with time delays. Acta Automat. Sinica, 31: 804–807. |
Библиографическая ссылка |
Liz, E. 2005. On explicit conditions for the asymptotic stability of linear higher order difference equations. J. Math. Anal. Appl., 303: 492–498. |
Библиографическая ссылка |
Liz, E. 2007. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete Contin. Dyn. Syst., Ser. B, 7: 191–199. |
Библиографическая ссылка |
Liz, E. 2007. A sharp global stability result for a discrete population model. J. Math. Anal. Appl., 330: 740–743. |
Библиографическая ссылка |
Liz, E. and Ferreiro, B. 2002. A note on the global stability of generalized difference equations. Appl. Math. Lett., 15: 655–659. |
Библиографическая ссылка |
Liz, E., Ivanov, A. and Ferreiro, J.B. 2003. Discrete Halanay-type inequalities and applications. Nonlinear Anal., 55: 669–678. |
Библиографическая ссылка |
Liz, E. and Pituk, M. 2005. Asymptotic estimates and exponential stability for higher order monotone difference equations. Adv. Difference Equ., : 41–55. |
Библиографическая ссылка |
Liz, E., Tkachenko, V. and Trofimchuk, S. 2003. Yorke and Wright 3/2-stability theorems from a unified point of view. Discrete Contin. Dynam. Syst., : 580–589. |
Библиографическая ссылка |
Liz, E., Tkachenko, V. and Trofimchuk, S. 2006. Global stability in discrete population models with delayed-density dependence. Math. Biosci., 199: 26–37. |
Библиографическая ссылка |
Memarbashi, R. 2008. Sufficient conditions for the exponential stability of nonautonomous difference equations. Appl. Math. Lett., 21: 232–235. |
Библиографическая ссылка |
Memarbashi, R. 2008. On the stability of nonautonomous difference equations. J. Difference Equ. Appl., 14: 301–307. |
Библиографическая ссылка |
Mohamad, S. and Gopalsamy, K. 2000. Continuous and discrete Halanay-type inequalities. Bull. Aus. Math. Soc., 61: 371–385. |
Библиографическая ссылка |
Mohamad, S. and Gopalsamy, K. 2003. Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. Math. Comput., 135: 17–38. |
Библиографическая ссылка |
Muroya, Y., Ishiwata, E. and Guglielmi, N. 2007. Global stability for nonlinear difference equations with variable coefficients, J. Math. Anal. Appl., 334: 232–247. |
Библиографическая ссылка |
Muroya, Y., Ishiwata, E. and Guglielmi, N. 2009. New global stability conditions for a class of difference equations. Front. Math. China, 4: 131–154. |
Библиографическая ссылка |
Nenya, O., Tkachenko, V. and Trofimchuk, S. 2008. On sharp conditions for the global stability of a difference equation satisfying the Yorke condition, Ukrainian Math. J., 60: 78–90. |
Библиографическая ссылка |
Qiang, Z. 2008. More relaxed condition for dynamics of discrete time delayed Hopfield neural networks. Chin. Phys. B, 17: 125–128. |
Библиографическая ссылка |
Sedaghat, H. 1998. Geometric stability conditions for higher order difference equations. J. Math. Anal. Appl., 224: 255–272. |
Библиографическая ссылка |
Sedaghat, H. 2003. Nonlinear difference equations. Theory with applications to social science models, Mathematical Modelling: Theory and Applications 15Dordrecht: Kluwer Academic Publishers. |
Библиографическая ссылка |
Stević, S. 2000. Behavior of the positive solutions of the generalized Beddington–Holt equation. Panamer. Math. J., 10: 77–85. |
Библиографическая ссылка |
Tang, X.H. and Jiang, Z. 2007. Asymptotic behavior of Volterra difference equation, J. Difference Equ. Appl., 13: 25–40. |
Библиографическая ссылка |
Tkachenko, V. and Trofimchuk, S. 2005. Global stability in difference equations satisfying the generalized Yorke condition. J. Math. Anal. Appl., 303: 173–187. |
Библиографическая ссылка |
Tkachenko, V. and Trofimchuk, S. 2006. global attractivity criterion for nonlinear non-autonomous difference equations. J. Math. Anal. Appl., 322: 901–912. |
Библиографическая ссылка |
Udpin, S. and Niamsup, P. 2009. New discrete type inequalities and global stability of nonlinear difference equations. Appl. Math. Lett., 22: 856–859. |
Библиографическая ссылка |
Yoneyama, T. 1987. On the 3/2 stability theorem for one-dimensional delay-differential equations. J. Math. Anal. Appl., 125: 161–173. |
Библиографическая ссылка |
Yorke, J.A. 1970. Asymptotic stability for one dimensional differential-delay equations. J. Differential Equat., 7: 189–202. |
Библиографическая ссылка |
Zeng, Z. and Wang, J. 2006. Multiperiodicity of discrete-time delayed neural networks evoked by periodic external inputs. IEEE Trans. Neural Netw., 17: 1141–1151. |
Библиографическая ссылка |
Zhang, Q., Wei, X. and Xu, J. 2007. global exponential stability of discrete-time Hopfield neural networks with variable delays. Discrete Dyn. Nat. Soc., : 9 Art. ID 67675 |
Библиографическая ссылка |
Zhou, Z. and Zhang, Q. 1998. Uniform stability of nonlinear difference systems. J. Math. Anal. Appl., 225: 486–500. |