Автор |
Berenhaut, Kenneth S. |
Автор |
Vish, Nathaniel G. |
Дата выпуска |
2011 |
dc.description |
This paper studies convolution type linear difference equations with coefficients satisfying some monotonicity properties. Methods from renewal theory are employed to obtain easily verified conditions for asymptotic stability of the zero solution, in terms of the coefficient sequence. Explicit bounds and rates of convergence are also considered, and an application to norms of matrix inverses is included. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
difference equations |
Тема |
convolution |
Тема |
asymptotic stability |
Тема |
renewal sequences |
Тема |
exponential convergence |
Тема |
explicit bounds |
Тема |
matrix inequalities |
Тема |
39A10 |
Тема |
39A11 |
Тема |
60K05 |
Тема |
15A09 |
Тема |
15A57 |
Название |
Equations of convolution type with monotone coefficients |
Тип |
research-article |
DOI |
10.1080/10236190903158974 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
17 |
Первая страница |
555 |
Последняя страница |
566 |
Аффилиация |
Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University |
Аффилиация |
Vish, Nathaniel G.; Department of Mathematics, Wake Forest University |
Выпуск |
4 |
Библиографическая ссылка |
Baxendale, P.H. 2005. Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab., 15(1B): 700–738. |
Библиографическая ссылка |
Berenhaut, K.S. and Lund, R.B. 2001. Geometric renewal convergence rates from hazard rates. J. Appl. Probab., 38(1): 180–194. |
Библиографическая ссылка |
Berenhaut, K.S. and Lund, R.B. 2002. Renewal convergence rates for DHR and NWU lifetimes. Probab. Eng. Inf. Sci., 16(1): 67–84. |
Библиографическая ссылка |
Berenhaut, K.S., Morton, D.C. and Fletcher, P.T. 2005. Bounds for inverses of triangular Toeplitz matrices. SIAM J. Matrix Anal. Appl., 27(1): 212–217. |
Библиографическая ссылка |
Berenhaut, K.S., Allen, E.E. and Fraser, S.J. 2006. Bounds on coefficients of reciprocals of formal power series with rapidly decreasing coefficients. Discrete Dyn. Nat. Soc., Art. ID 40270, 18 pp |
Библиографическая ссылка |
Berenhaut, K.S., Guy, R.T. and Vish, N.G. 2008. A 1-norm bound for inverses of triangular matrices with monotone entries. Banach J. Math. Anal., 2(1): 112–121. |
Библиографическая ссылка |
Chung, K.L. and Wolfowitz, J. 1952. On a limit theorem in renewal theory. Ann. Math., 2(55): 1–6. |
Библиографическая ссылка |
Elaydi, S. 1993. “Stability of Volterra difference equations of convolution type”. In Dynamical Systems, Nankai Ser. Pure Appl. Math. Theoret. Phys., 4 66–72. River Edge, NJ: World Scientific Publisher. |
Библиографическая ссылка |
Elaydi, S. 2005. An Introduction to Difference Equations, 3rd ed., New York, NY: Springer. |
Библиографическая ссылка |
Elaydi, S., Messina, E. and Vecchio, A. 2007. On the asymptotic stability of linear Volterra difference equations of convolution type. J. Differ. Equ. Appl., 13(12): 1079–1084. |
Библиографическая ссылка |
Erdös, P., Feller, W. and Pollard, H. 1949. A property of power series with positive coefficients. Bull. Am. Math. Soc., 55: 201–204. |
Библиографическая ссылка |
Feller, W. 1968. An Introduction to Probability Theory and its Applications, 3rd ed., Vol. I, New York-London-Sydney: John Wiley & Sons, Inc.. |
Библиографическая ссылка |
Heathcote, C.R. 1967. Complete exponential convergence and some related topics. J. Appl. Probab., 4: 217–256. |
Библиографическая ссылка |
Kendall, D.G. 1959. “Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices”. In Probability and Statistics: The Harald Cramér Volume, Edited by: Grenander, Ulf. 139–161. New York, NY: John Wiley & Sons. |
Библиографическая ссылка |
Kijima, M. 1997. Markov Processes for Stochastic Modeling, London: Chapman and Hall. |
Библиографическая ссылка |
Meyn, S.P. and Tweedie, R.L. 1993. Markov Chains and Stochastic Stability, Communications and Control Engineering Series London: Springer-Verlag London, Ltd. |
Библиографическая ссылка |
Roberts, G.O. and Polson, N.G. 1994. On the geometric convergence of the Gibbs sampler. J. R. Stat. Soc. Ser. B, 56(2): 377–384. |
Библиографическая ссылка |
Rosenthal, J.S. 1995. Convergence rates for Markov chains. SIAM Rev., 37(3): 387–405. |
Библиографическая ссылка |
Vecchio, A. 2003. A bound for the inverse of a lower triangular Toeplitz matrix. SIAM J. Matrix Anal. Appl., 24(4): 1167–1174. |
Библиографическая ссылка |
Vecchio, A. and Mallik, R.K. 2007. Bounds on the inverses of nonnegative lower triangular Toeplitz matrices wih monoonicity properties. Linear Mulilinear Algebra, 55(4): 365–379. |