Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Berenhaut, Kenneth S.
Автор Vish, Nathaniel G.
Дата выпуска 2011
dc.description This paper studies convolution type linear difference equations with coefficients satisfying some monotonicity properties. Methods from renewal theory are employed to obtain easily verified conditions for asymptotic stability of the zero solution, in terms of the coefficient sequence. Explicit bounds and rates of convergence are also considered, and an application to norms of matrix inverses is included.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема difference equations
Тема convolution
Тема asymptotic stability
Тема renewal sequences
Тема exponential convergence
Тема explicit bounds
Тема matrix inequalities
Тема 39A10
Тема 39A11
Тема 60K05
Тема 15A09
Тема 15A57
Название Equations of convolution type with monotone coefficients
Тип research-article
DOI 10.1080/10236190903158974
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 17
Первая страница 555
Последняя страница 566
Аффилиация Berenhaut, Kenneth S.; Department of Mathematics, Wake Forest University
Аффилиация Vish, Nathaniel G.; Department of Mathematics, Wake Forest University
Выпуск 4
Библиографическая ссылка Baxendale, P.H. 2005. Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab., 15(1B): 700–738.
Библиографическая ссылка Berenhaut, K.S. and Lund, R.B. 2001. Geometric renewal convergence rates from hazard rates. J. Appl. Probab., 38(1): 180–194.
Библиографическая ссылка Berenhaut, K.S. and Lund, R.B. 2002. Renewal convergence rates for DHR and NWU lifetimes. Probab. Eng. Inf. Sci., 16(1): 67–84.
Библиографическая ссылка Berenhaut, K.S., Morton, D.C. and Fletcher, P.T. 2005. Bounds for inverses of triangular Toeplitz matrices. SIAM J. Matrix Anal. Appl., 27(1): 212–217.
Библиографическая ссылка Berenhaut, K.S., Allen, E.E. and Fraser, S.J. 2006. Bounds on coefficients of reciprocals of formal power series with rapidly decreasing coefficients. Discrete Dyn. Nat. Soc., Art. ID 40270, 18 pp
Библиографическая ссылка Berenhaut, K.S., Guy, R.T. and Vish, N.G. 2008. A 1-norm bound for inverses of triangular matrices with monotone entries. Banach J. Math. Anal., 2(1): 112–121.
Библиографическая ссылка Chung, K.L. and Wolfowitz, J. 1952. On a limit theorem in renewal theory. Ann. Math., 2(55): 1–6.
Библиографическая ссылка Elaydi, S. 1993. “Stability of Volterra difference equations of convolution type”. In Dynamical Systems, Nankai Ser. Pure Appl. Math. Theoret. Phys., 4 66–72. River Edge, NJ: World Scientific Publisher.
Библиографическая ссылка Elaydi, S. 2005. An Introduction to Difference Equations, 3rd ed., New York, NY: Springer.
Библиографическая ссылка Elaydi, S., Messina, E. and Vecchio, A. 2007. On the asymptotic stability of linear Volterra difference equations of convolution type. J. Differ. Equ. Appl., 13(12): 1079–1084.
Библиографическая ссылка Erdös, P., Feller, W. and Pollard, H. 1949. A property of power series with positive coefficients. Bull. Am. Math. Soc., 55: 201–204.
Библиографическая ссылка Feller, W. 1968. An Introduction to Probability Theory and its Applications, 3rd ed., Vol. I, New York-London-Sydney: John Wiley & Sons, Inc..
Библиографическая ссылка Heathcote, C.R. 1967. Complete exponential convergence and some related topics. J. Appl. Probab., 4: 217–256.
Библиографическая ссылка Kendall, D.G. 1959. “Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices”. In Probability and Statistics: The Harald Cramér Volume, Edited by: Grenander, Ulf. 139–161. New York, NY: John Wiley & Sons.
Библиографическая ссылка Kijima, M. 1997. Markov Processes for Stochastic Modeling, London: Chapman and Hall.
Библиографическая ссылка Meyn, S.P. and Tweedie, R.L. 1993. Markov Chains and Stochastic Stability, Communications and Control Engineering Series London: Springer-Verlag London, Ltd.
Библиографическая ссылка Roberts, G.O. and Polson, N.G. 1994. On the geometric convergence of the Gibbs sampler. J. R. Stat. Soc. Ser. B, 56(2): 377–384.
Библиографическая ссылка Rosenthal, J.S. 1995. Convergence rates for Markov chains. SIAM Rev., 37(3): 387–405.
Библиографическая ссылка Vecchio, A. 2003. A bound for the inverse of a lower triangular Toeplitz matrix. SIAM J. Matrix Anal. Appl., 24(4): 1167–1174.
Библиографическая ссылка Vecchio, A. and Mallik, R.K. 2007. Bounds on the inverses of nonnegative lower triangular Toeplitz matrices wih monoonicity properties. Linear Mulilinear Algebra, 55(4): 365–379.

Скрыть метаданые