Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ma, Ruyun
Автор Gao, Chenghua
Автор Xu, Youji
Дата выпуска 2011
dc.description Let be an integer with , , . We give a global description of the branches of positive solutions of the nonlinear eigenvalue problemwhich are not necessarily linearizable. Our approaches are based on topological degree and global bifurcation techniques.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема multiplicity
Тема difference equations
Тема positive solutions
Тема global bifurcation techniques
Тема eigenvalues
Тема 39A10
Тема 34G20
Название Bifurcation interval for positive solutions to discrete second-order boundary value problems
Тип research-article
DOI 10.1080/10236190903158982
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 17
Первая страница 1251
Последняя страница 1265
Аффилиация Ma, Ruyun; Department of Mathematics, Northwest Normal University
Аффилиация Gao, Chenghua; Department of Mathematics, Northwest Normal University
Аффилиация Xu, Youji; Department of Mathematics, Northwest Normal University
Выпуск 9
Библиографическая ссылка Agarwal, R.P. and Henderson, J. 1998. Positive solutions and nonlinear eigenvalue problems for third-order difference equations. Comput. Math. Appl., 36(10–12): 347–355.
Библиографическая ссылка Agarwal, R.P. and O'Regan, D. 1997. Boundary value problems for discrete equations. Appl. Math. Lett., 10: 83–89.
Библиографическая ссылка Agarwal, R.P. and Wong, F.-H. 1997. Existence of positive solutions for nonpositive difference equations. Math. Comput. Model., 26(7): 77–85.
Библиографическая ссылка Amann, H. 1976. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev., 18(4): 620–709.
Библиографическая ссылка Cheng, S.S. and Yen, H.-T. 2000. On a discrete nonlinear boundary value problem. Linear Algebra Appl., 313(1–3): 193–201.
Библиографическая ссылка Ma, R. 2007. Nonlinear discrete Sturm–Liouville problems at resonance. Nonlinear Anal., 67(11): 3050–3057.
Библиографическая ссылка Ma, R. and Gao, C. 2008. Sign-changing solutions of nonlinear boundary value problems of difference equations. Indian J. Pure Appl. Math., 39(4): 323–332.
Библиографическая ссылка Ma, R. and Ma, H. 2008. Existence of sign-changing periodic solutions of second order difference equations. Appl. Math. Comput., 203(2): 463–470.
Библиографическая ссылка Rabinowitz, P.H. 1973. Some aspects of nonlinear eigenvalue problems. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971). Rocky Mountain J. Math., 3: 161–202.
Библиографическая ссылка Rachunkova, I. and Tisdell, C.C. 2007. Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions. Nonlinear Anal. TMA, 67(4): 1236–1245.
Библиографическая ссылка Rodriguez, J. 2005. Nonlinear discrete Sturm–Liouville problems. J. Math. Anal. Appl., 308(1): 380–391.
Библиографическая ссылка Schmitt, K. 1995. “Positive solutions of semilinear elliptic boundary value problems”. In Topological Methods in Differential Equations and Inclusions, Edited by: Garnas, A. and Frigon, M. 447–500. Dordrecht: Kluwer.
Библиографическая ссылка Wang, Y. and Shi, Y. 2005. Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions. J. Math. Anal. Appl., 309: 56–69.
Библиографическая ссылка Zhang, G. and Feng, W. 2007. On the number of positive solutions of a nonlinear algebraic system. Linear Algebra Appl., 422(2–3): 404–421.

Скрыть метаданые