Автор |
Ma, Ruyun |
Автор |
Gao, Chenghua |
Автор |
Xu, Youji |
Дата выпуска |
2011 |
dc.description |
Let be an integer with , , . We give a global description of the branches of positive solutions of the nonlinear eigenvalue problemwhich are not necessarily linearizable. Our approaches are based on topological degree and global bifurcation techniques. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
multiplicity |
Тема |
difference equations |
Тема |
positive solutions |
Тема |
global bifurcation techniques |
Тема |
eigenvalues |
Тема |
39A10 |
Тема |
34G20 |
Название |
Bifurcation interval for positive solutions to discrete second-order boundary value problems |
Тип |
research-article |
DOI |
10.1080/10236190903158982 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
17 |
Первая страница |
1251 |
Последняя страница |
1265 |
Аффилиация |
Ma, Ruyun; Department of Mathematics, Northwest Normal University |
Аффилиация |
Gao, Chenghua; Department of Mathematics, Northwest Normal University |
Аффилиация |
Xu, Youji; Department of Mathematics, Northwest Normal University |
Выпуск |
9 |
Библиографическая ссылка |
Agarwal, R.P. and Henderson, J. 1998. Positive solutions and nonlinear eigenvalue problems for third-order difference equations. Comput. Math. Appl., 36(10–12): 347–355. |
Библиографическая ссылка |
Agarwal, R.P. and O'Regan, D. 1997. Boundary value problems for discrete equations. Appl. Math. Lett., 10: 83–89. |
Библиографическая ссылка |
Agarwal, R.P. and Wong, F.-H. 1997. Existence of positive solutions for nonpositive difference equations. Math. Comput. Model., 26(7): 77–85. |
Библиографическая ссылка |
Amann, H. 1976. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev., 18(4): 620–709. |
Библиографическая ссылка |
Cheng, S.S. and Yen, H.-T. 2000. On a discrete nonlinear boundary value problem. Linear Algebra Appl., 313(1–3): 193–201. |
Библиографическая ссылка |
Ma, R. 2007. Nonlinear discrete Sturm–Liouville problems at resonance. Nonlinear Anal., 67(11): 3050–3057. |
Библиографическая ссылка |
Ma, R. and Gao, C. 2008. Sign-changing solutions of nonlinear boundary value problems of difference equations. Indian J. Pure Appl. Math., 39(4): 323–332. |
Библиографическая ссылка |
Ma, R. and Ma, H. 2008. Existence of sign-changing periodic solutions of second order difference equations. Appl. Math. Comput., 203(2): 463–470. |
Библиографическая ссылка |
Rabinowitz, P.H. 1973. Some aspects of nonlinear eigenvalue problems. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M., 1971). Rocky Mountain J. Math., 3: 161–202. |
Библиографическая ссылка |
Rachunkova, I. and Tisdell, C.C. 2007. Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions. Nonlinear Anal. TMA, 67(4): 1236–1245. |
Библиографическая ссылка |
Rodriguez, J. 2005. Nonlinear discrete Sturm–Liouville problems. J. Math. Anal. Appl., 308(1): 380–391. |
Библиографическая ссылка |
Schmitt, K. 1995. “Positive solutions of semilinear elliptic boundary value problems”. In Topological Methods in Differential Equations and Inclusions, Edited by: Garnas, A. and Frigon, M. 447–500. Dordrecht: Kluwer. |
Библиографическая ссылка |
Wang, Y. and Shi, Y. 2005. Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions. J. Math. Anal. Appl., 309: 56–69. |
Библиографическая ссылка |
Zhang, G. and Feng, W. 2007. On the number of positive solutions of a nonlinear algebraic system. Linear Algebra Appl., 422(2–3): 404–421. |