Автор |
Singh, Vimal |
Дата выпуска |
2011 |
dc.description |
A new sufficient condition in the form of a state-space criterion for global asymptotic stability of direct-form digital filters utilizing single saturation nonlinearity is presented. An alternative sufficient condition in the form of a matrix frequency-domain inequality is also presented. Examples show the effectiveness of the present criteria. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
asymptotic stability |
Тема |
difference equations |
Тема |
discrete-time dynamical systems |
Тема |
finite word length effects |
Тема |
limit cycles |
Тема |
Lyapunov method |
Тема |
39A10 |
Тема |
39A11 |
Тема |
93C10 |
Тема |
93C55 |
Тема |
93C62 |
Название |
New criteria for global asymptotic stability of direct-form digital filters utilizing single saturation nonlinearity |
Тип |
research-article |
DOI |
10.1080/10236190903489965 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
17 |
Первая страница |
1281 |
Последняя страница |
1290 |
Аффилиация |
Singh, Vimal; Department of Electrical-Electronics Engineering, Atilim University |
Выпуск |
9 |
Библиографическая ссылка |
Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On second-order rational difference equations. J. Difference Equ. Appl., 13: 969–1004. |
Библиографическая ссылка |
Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On second-order rational difference equations, part 2. J. Difference Equ. Appl., 14: 215–228. |
Библиографическая ссылка |
Antippa, A.F. 2008. Recursive formulation of the relativistic law of superposition of multiple collinear velocities. J. Difference Equ. Appl., 13: 563–575. |
Библиографическая ссылка |
Appleby, J., Berkolaiko, G. and Rodkina, A. 2008. On local stability for a nonlinear difference equation with a non-hyperbolic equilibrium and fading stochastic perturbations. J. Difference Equ. Appl., 14: 923–951. |
Библиографическая ссылка |
Bereanu, C. and Mawhin, J. 2008. Boundary value problems for second-order difference equations with discrete ϕ-Laplacian and singular ϕ. J. Difference Equ. Appl., 14: 1099–1118. |
Библиографическая ссылка |
Berg, L. and Stevic, S. 2008. Linear difference equations mod 2 with applications to nonlinear difference equations. J. Difference Equ. Appl., 14: 693–704. |
Библиографическая ссылка |
Boyd, S., Ghaoui, L.El., Feron, E. and Balakrishnan, V. 1994. Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM. |
Библиографическая ссылка |
Camouzis, E. and Ladas, G. 2008. On third-order rational difference equations, part 1. J. Difference Equ. Appl., 14: 333–343. |
Библиографическая ссылка |
Canovas, J.S. 2009. Reducing competitors in a Cournot–Theocharis oligopoly model. J. Difference Equ. Appl., 15: 153–165. |
Библиографическая ссылка |
Cermak, J., Kundrat, P. and Urbanek, M. 2008. Delay equations on time scales: Essentials and asymptotes of the solutions. J. Difference Equ. Appl., 14: 567–580. |
Библиографическая ссылка |
Dehghan, M., Kent, C.M., Mazrooei-Sebdani, R., Ortiz, N.L. and Sedaghat, H. 2008. Dynamics of rational difference equations containing quadratic terms. J. Difference Equ. Appl., 14: 191–208. |
Библиографическая ссылка |
Douraki, M.J. and Mashreghi, J. 2008. On the population model of non-autonomous logistic equation of second order with period-two parameters. J. Difference Equ. Appl., 14: 231–257. |
Библиографическая ссылка |
Ebert, P.M., Mazo, J.E. and Taylor, M.G. 1969. Overflow oscillations in digital filters. Bell Syst. Tech. J., 48: 2999–3020. |
Библиографическая ссылка |
Elaydi, S., Fenner, J., Ladas, G. and Pinto, M., eds. 2002. New Trends in Difference Equations: Proceedings of the Fifth International Conference on Difference Equations, 306New York: Taylor & Francis. ISBN: 0-415-28389-2 |
Библиографическая ссылка |
El-Morshedy, H.A. and Lopez, V.J. 2008. Global attractors for difference equations dominated by one-dimensional maps. J. Difference Equ. Appl., 14: 391–410. |
Библиографическая ссылка |
Erbe, L., Peterson, A. and Saker, S.H. 2008. Oscillation criteria for a forced second-order nonlinear dynamic equation. J. Difference Equ. Appl., 14: 997–1009. |
Библиографическая ссылка |
Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. 1995. LMI Control Toolbox – for Use with Matlab, Natick, MA: The MathWorks Inc.. |
Библиографическая ссылка |
Hidalgo, R.A. 2008. Zeros of semilinear systems with applications to nonlinear partial difference equations on graphs. J. Difference Equ. Appl., 14: 953–959. |
Библиографическая ссылка |
Hu, L.-X., Li, W.-T. and Stevic, S. 2008. Global asymptotic stability of a second order rational difference equation. J. Difference Equ. Appl., 14: 779–797. |
Библиографическая ссылка |
Jury, E.I. and Lee, B.W. 1964. On the stability of a certain class of nonlinear sampled-data systems. IEEE Trans. Automat. Control, 9: 51–61. |
Библиографическая ссылка |
Kar, H. and Singh, V. 2005. Elimination of overflow oscillations in digital filters employing saturation arithmetic. Digital Signal Process., 15: 536–544. |
Библиографическая ссылка |
Liu, D. and Michel, A.N. 1994. Dynamical Systems with Saturation Nonlinearities: Analysis and Design, New York: Springer-Verlag. |
Библиографическая ссылка |
Memarbashi, R. 2008. On the stability of nonautonomous difference equations. J. Difference Equ. Appl., 14: 301–307. |
Библиографическая ссылка |
Mills, W.L., Mullis, C.T. and Roberts, R.A. 1978. Digital filter realizations without overflow oscillations. IEEE Trans. Acoust. Speech Signal Process., 26: 334–338. |
Библиографическая ссылка |
Oliveira, J.C., Pereira, J.M. and Menzala, G.P. 2008. Attractors for second order periodic lattices with nonlinear damping. J. Difference Equ. Appl., 14: 899–921. |
Библиографическая ссылка |
Opeinhem, A.V. and Schafer, R.W. 1999. Discrete-Time Signal Processing, 2nd ed., Upper Saddle River, NJ: Prentice-Hall. |
Библиографическая ссылка |
Palladino, F.J. 2009. On the characterization of rational difference equations. J. Difference Equ. Appl., 15: 253–260. |
Библиографическая ссылка |
Roeger, L.-I.W. 2009. Nonstandard finite difference schemes for differential equations with n+1 distinct fixed points. J. Difference Equ. Appl., 15: 133–151. |
Библиографическая ссылка |
Sedaghat, S. 2009. Global behaviors of rational difference equations of orders two and three with quadratic terms. J. Difference Equ. Appl., 15: 215–224. |
Библиографическая ссылка |
Singh, V. 1990. Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst., 37: 814–818. |
Библиографическая ссылка |
Singh, V. 2006. Modified form of Liu-Michel's criterion for global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. II, 53: 1423–1425. |
Библиографическая ссылка |
Singh, V. 2008. Elimination of limit cycles in a class of digital filters using single saturation nonlinearity. J. Difference Equ. Appl., 14: 1255–1265. |
Библиографическая ссылка |
Song, Y. 2008. Asymptotically almost periodic solutions of nonlinear Volterra difference equations with unbounded delay. J. Difference Equ. Appl., 14: 971–986. |
Библиографическая ссылка |
Tsypkin, Y.Z. 1964. A criterion for absolute stability of automatic pulse systems with monotonic characteristic of the nonlinear element. Dokl. Akad. Nauk. (U.S.S.R), 115: 1029–1032. |
Библиографическая ссылка |
Villatoro, F.R. 2008. Exact finite-difference methods based on nonlinear means. J. Difference Equ. Appl., 14: 681–691. |