Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Singh, Vimal
Дата выпуска 2011
dc.description A new sufficient condition in the form of a state-space criterion for global asymptotic stability of direct-form digital filters utilizing single saturation nonlinearity is presented. An alternative sufficient condition in the form of a matrix frequency-domain inequality is also presented. Examples show the effectiveness of the present criteria.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема asymptotic stability
Тема difference equations
Тема discrete-time dynamical systems
Тема finite word length effects
Тема limit cycles
Тема Lyapunov method
Тема 39A10
Тема 39A11
Тема 93C10
Тема 93C55
Тема 93C62
Название New criteria for global asymptotic stability of direct-form digital filters utilizing single saturation nonlinearity
Тип research-article
DOI 10.1080/10236190903489965
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 17
Первая страница 1281
Последняя страница 1290
Аффилиация Singh, Vimal; Department of Electrical-Electronics Engineering, Atilim University
Выпуск 9
Библиографическая ссылка Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On second-order rational difference equations. J. Difference Equ. Appl., 13: 969–1004.
Библиографическая ссылка Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On second-order rational difference equations, part 2. J. Difference Equ. Appl., 14: 215–228.
Библиографическая ссылка Antippa, A.F. 2008. Recursive formulation of the relativistic law of superposition of multiple collinear velocities. J. Difference Equ. Appl., 13: 563–575.
Библиографическая ссылка Appleby, J., Berkolaiko, G. and Rodkina, A. 2008. On local stability for a nonlinear difference equation with a non-hyperbolic equilibrium and fading stochastic perturbations. J. Difference Equ. Appl., 14: 923–951.
Библиографическая ссылка Bereanu, C. and Mawhin, J. 2008. Boundary value problems for second-order difference equations with discrete ϕ-Laplacian and singular ϕ. J. Difference Equ. Appl., 14: 1099–1118.
Библиографическая ссылка Berg, L. and Stevic, S. 2008. Linear difference equations mod 2 with applications to nonlinear difference equations. J. Difference Equ. Appl., 14: 693–704.
Библиографическая ссылка Boyd, S., Ghaoui, L.El., Feron, E. and Balakrishnan, V. 1994. Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM.
Библиографическая ссылка Camouzis, E. and Ladas, G. 2008. On third-order rational difference equations, part 1. J. Difference Equ. Appl., 14: 333–343.
Библиографическая ссылка Canovas, J.S. 2009. Reducing competitors in a Cournot–Theocharis oligopoly model. J. Difference Equ. Appl., 15: 153–165.
Библиографическая ссылка Cermak, J., Kundrat, P. and Urbanek, M. 2008. Delay equations on time scales: Essentials and asymptotes of the solutions. J. Difference Equ. Appl., 14: 567–580.
Библиографическая ссылка Dehghan, M., Kent, C.M., Mazrooei-Sebdani, R., Ortiz, N.L. and Sedaghat, H. 2008. Dynamics of rational difference equations containing quadratic terms. J. Difference Equ. Appl., 14: 191–208.
Библиографическая ссылка Douraki, M.J. and Mashreghi, J. 2008. On the population model of non-autonomous logistic equation of second order with period-two parameters. J. Difference Equ. Appl., 14: 231–257.
Библиографическая ссылка Ebert, P.M., Mazo, J.E. and Taylor, M.G. 1969. Overflow oscillations in digital filters. Bell Syst. Tech. J., 48: 2999–3020.
Библиографическая ссылка Elaydi, S., Fenner, J., Ladas, G. and Pinto, M., eds. 2002. New Trends in Difference Equations: Proceedings of the Fifth International Conference on Difference Equations, 306New York: Taylor & Francis. ISBN: 0-415-28389-2
Библиографическая ссылка El-Morshedy, H.A. and Lopez, V.J. 2008. Global attractors for difference equations dominated by one-dimensional maps. J. Difference Equ. Appl., 14: 391–410.
Библиографическая ссылка Erbe, L., Peterson, A. and Saker, S.H. 2008. Oscillation criteria for a forced second-order nonlinear dynamic equation. J. Difference Equ. Appl., 14: 997–1009.
Библиографическая ссылка Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. 1995. LMI Control Toolbox – for Use with Matlab, Natick, MA: The MathWorks Inc..
Библиографическая ссылка Hidalgo, R.A. 2008. Zeros of semilinear systems with applications to nonlinear partial difference equations on graphs. J. Difference Equ. Appl., 14: 953–959.
Библиографическая ссылка Hu, L.-X., Li, W.-T. and Stevic, S. 2008. Global asymptotic stability of a second order rational difference equation. J. Difference Equ. Appl., 14: 779–797.
Библиографическая ссылка Jury, E.I. and Lee, B.W. 1964. On the stability of a certain class of nonlinear sampled-data systems. IEEE Trans. Automat. Control, 9: 51–61.
Библиографическая ссылка Kar, H. and Singh, V. 2005. Elimination of overflow oscillations in digital filters employing saturation arithmetic. Digital Signal Process., 15: 536–544.
Библиографическая ссылка Liu, D. and Michel, A.N. 1994. Dynamical Systems with Saturation Nonlinearities: Analysis and Design, New York: Springer-Verlag.
Библиографическая ссылка Memarbashi, R. 2008. On the stability of nonautonomous difference equations. J. Difference Equ. Appl., 14: 301–307.
Библиографическая ссылка Mills, W.L., Mullis, C.T. and Roberts, R.A. 1978. Digital filter realizations without overflow oscillations. IEEE Trans. Acoust. Speech Signal Process., 26: 334–338.
Библиографическая ссылка Oliveira, J.C., Pereira, J.M. and Menzala, G.P. 2008. Attractors for second order periodic lattices with nonlinear damping. J. Difference Equ. Appl., 14: 899–921.
Библиографическая ссылка Opeinhem, A.V. and Schafer, R.W. 1999. Discrete-Time Signal Processing, 2nd ed., Upper Saddle River, NJ: Prentice-Hall.
Библиографическая ссылка Palladino, F.J. 2009. On the characterization of rational difference equations. J. Difference Equ. Appl., 15: 253–260.
Библиографическая ссылка Roeger, L.-I.W. 2009. Nonstandard finite difference schemes for differential equations with n+1 distinct fixed points. J. Difference Equ. Appl., 15: 133–151.
Библиографическая ссылка Sedaghat, S. 2009. Global behaviors of rational difference equations of orders two and three with quadratic terms. J. Difference Equ. Appl., 15: 215–224.
Библиографическая ссылка Singh, V. 1990. Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst., 37: 814–818.
Библиографическая ссылка Singh, V. 2006. Modified form of Liu-Michel's criterion for global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. II, 53: 1423–1425.
Библиографическая ссылка Singh, V. 2008. Elimination of limit cycles in a class of digital filters using single saturation nonlinearity. J. Difference Equ. Appl., 14: 1255–1265.
Библиографическая ссылка Song, Y. 2008. Asymptotically almost periodic solutions of nonlinear Volterra difference equations with unbounded delay. J. Difference Equ. Appl., 14: 971–986.
Библиографическая ссылка Tsypkin, Y.Z. 1964. A criterion for absolute stability of automatic pulse systems with monotonic characteristic of the nonlinear element. Dokl. Akad. Nauk. (U.S.S.R), 115: 1029–1032.
Библиографическая ссылка Villatoro, F.R. 2008. Exact finite-difference methods based on nonlinear means. J. Difference Equ. Appl., 14: 681–691.

Скрыть метаданые