Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Camouzis, E.
Автор Drymonis, E.
Автор Ladas, G.
Автор Tikjha, W.
Дата выпуска 2012
dc.description We investigate the boundedness character of non-negative solutions of the rational system as in the title. We establish easily verifiable necessary and sufficient conditions, explicitly stated in terms of the parameters of the system, which determine the boundedness character of the system.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема boundedness
Тема patterns of boundedness
Тема rational systems
Тема 39A10
Название Patterns of boundedness of the rational system x <sub> n+1</sub> = α <sub>1</sub> / (A <sub>1</sub> + B <sub>1</sub> x <sub> n </sub> + C <sub>1</sub> y <sub> n </sub>) and y <sub> n+1</sub> = (α<sub>2</sub> + β <sub>2</sub> x <sub> n </sub> + γ <sub>2</sub> y <sub> n </sub>) / (A <sub>2</sub> + B <sub>2</sub> x <sub> n </sub> + C <sub>2</sub> y <sub> n </sub>)
Тип research-article
DOI 10.1080/10236198.2010.515591
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 18
Первая страница 89
Последняя страница 110
Аффилиация Camouzis, E.; Department of Mathematics, American College of Greece
Аффилиация Drymonis, E.; Department of Mathematics, University of Rhode Island
Аффилиация Ladas, G.; Department of Mathematics, University of Rhode Island
Аффилиация Tikjha, W.; Department of Mathematics, University of Rhode Island
Выпуск 1
Библиографическая ссылка Agarwal, R. 1992. Difference Equations and Inequalities, Theory, Methods and Applications, New York: Marcel Dekker, Inc..
Библиографическая ссылка Alligood, K.T., Sauer, T. and Yorke, J.A. 1997. CHAOS an Introduction to Dynamical Systems, New York, Berlin, Heidelberg, Tokyo: Springer-Verlag.
Библиографическая ссылка Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On the dynamics of a rational difference equation, part 1. Int. J. Differ. Equ., 3: 1–35.
Библиографическая ссылка Amleh, A.M., Camouzis, E. and Ladas, G. 2008. On the dynamics of a rational difference equation, part 2. Int. J. Differ. Equ., 3: 195–225.
Библиографическая ссылка Amleh, A.M., Camouzis, E., Ladas, G. and Radin, M. 2010. Patterns of boundedness of a rational system in the plane. J. Differ. Equ. Appl., 6: 1197–1236.
Библиографическая ссылка Brett, A., Camouzis, E., Lynd, C. and Ladas, G. 2009. On the boundedness character of a rational system. JNMaS, 1: 1–10.
Библиографическая ссылка Camouzis, E. 2009. Boundedness of solutions of a rational system of difference equations, in Proceedings of the 14th International Conference on Difference Equations and Applications held in Instanbul, Turkey, July 21–25, 2008 157–164. Istanbul: Ugur-Bahcesehir University Publishing Company. Turkey Difference Equations and Applications, ISBN 978-975-6437-80-3
Библиографическая ссылка Camouzis, E., Drymonis, E. and Ladas, G. 2009. On the global character of the system // . Commun. Appl. Nonlinear Anal., 16: 51–64.
Библиографическая ссылка Camouzis, E., Drymonis, E. and Ladas, G. 2010. Patterns of boundedness of the rational system // . Fassiculi Mathematici, 44: 9–18.
Библиографическая ссылка Camouzis, E., Gilbert, A., Heissan, M. and Ladas, G. 2009. On the boundedness character of the system // . Commun. Math. Anal., 7: 41–50.
Библиографическая ссылка Camouzis, E., Kulenović, M.R.S., Ladas, G. and Merino, O. 2009. Rational systems in the plane. J. Differ. Equ. Appl., 15: 303–323.
Библиографическая ссылка Camouzis, E. and Ladas, G. 2008. Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Boca Raton, Florida: Chapman & Hall/CRC Press.
Библиографическая ссылка Camouzis, E. and Ladas, G. 2009. Global results on rational systems in the plane, I. J. Differ. Equ. Appl., 16: 975–1013.
Библиографическая ссылка Camouzis, E., Ladas, G. and Voulov, H.D. 2003. On the dynamics of / . J. Differ. Equ. Appl., 9: 731–738.
Библиографическая ссылка Camouzis, E., Ladas, G. and Wu, L. 2009. On the global character of the system // . Int. J. Pure Appl. Math., 53: 21–36.
Библиографическая ссылка Clark, M.E. and Gross, L.J. 1990. Periodic solutions to nonautonomous difference equations. Math. Biosci., 102: 105–119.
Библиографическая ссылка Clark, D. and Kulenović, M.R.S. 2002. On a coupled system of rational difference equations. Comput. Math. Appl., 43: 849–867.
Библиографическая ссылка Clark, C.A., Kulenović, M.R.S. and Selgrade, J.F. 2005. On a system of rational difference equations. J. Differ. Equ. Appl., 11: 565–580.
Библиографическая ссылка Cushing, J.M., Levarge, S., Chitnis, N. and Henson, S.M. 2004. Some discrete competition models and the competitive exclusion principle. J. Differ. Equ. Appl., 10: 1139–1152.
Библиографическая ссылка Elaydi, S. 1999. An Introduction to Difference Equations, 2nd ed., New York: Springer-Verlag.
Библиографическая ссылка Elaydi, S. and Sacker, R.J. 2003. “Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing-Henson conjectures”. In Proceedings of the 8th International Conference on Difference Equations and Applications, 112–126. Boca Raton, Florida: Chapman & Hall/CRC Press.
Библиографическая ссылка Grove, E.A., Kostrov, Y., Radin, M.A. and Schultz, S. 2010. On the global character of solutions of the system // . Commun. Appl. Nonlinear Anal., 17: 69–91.
Библиографическая ссылка Grove, E.A. and Ladas, G. 2002. Periodicity in nonlinear difference equations. Revista Cubo, : 195–230.
Библиографическая ссылка Grove, E.A., Ladas, G., McGrath, L.C. and Teixeira, C.T. 2001. Existence and behavior of solutions of a rational system. Commun. Appl. Nonlinear Anal., 8: 1–25.
Библиографическая ссылка Guckenheimer, J. and Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York, Berlin, Heidelberg, Tokyo: Springer-Verlag.
Библиографическая ссылка Hale, J. and Kocak, H. 1991. Dynamics and Bifurcations, New York, Berlin, Heidelberg, Tokyo: Springer-Verlag.
Библиографическая ссылка Hirsch, M. and Smith, H.L. 2005. Monotone maps: A review. J. Differ. Equ. Appl., 11: 379–398.
Библиографическая ссылка Kelley, W.G. and Peterson, A.C. 1991. Difference Equations, New York: Academic Press.
Библиографическая ссылка Kocic, V.L. and Ladas, G. 1993. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Dordrecht: Kluwer Academic Publishers.
Библиографическая ссылка Kulenović, M.R.S. and Ladas, G. 2001. Dynamics of Second Order Rational Difference Equations; with Open Problems and Conjectures, Boca Raton, Florida: Chapman & Hall/CRC Press.
Библиографическая ссылка Magnucka-Blandzi, E. and Popenda, J. 1999. On the asymptotic behavior of a rational system of difference equations. J. Differ. Equ. Appl., 5(3): 271–286.
Библиографическая ссылка Sedaghat, H. 2003. Nonlinear Difference Equations, Theory and Applications to Social Science Models, Dordrecht: Kluwer Academic Publishers.

Скрыть метаданые