Автор |
Luca, Rodica |
Дата выпуска |
2012 |
dc.description |
We study the existence of positive solutions with respect to a cone for a nonlinear system with second-order differences, subject to some -point boundary conditions. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
difference equations |
Тема |
boundary conditions |
Тема |
positive solutions |
Тема |
fixed point theorem |
Тема |
39A10 |
Название |
Existence of positive solutions for a second-order m+1-point discrete boundary value problem |
Тип |
research-article |
DOI |
10.1080/10236198.2010.524213 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
18 |
Первая страница |
865 |
Последняя страница |
877 |
Аффилиация |
Luca, Rodica; Department of Mathematics, Gh. Asachi Technical University |
Выпуск |
5 |
Библиографическая ссылка |
Anderson, D.R. 2002. Solutions to second-order three-point problems on time scales. J. Difference Equ. Appl., 8: 673–688. |
Библиографическая ссылка |
Anderson, D.R. 2004. Twin n-point boundary value problems. Appl. Math. Lett., 17: 1053–1059. |
Библиографическая ссылка |
Avery, R. 1998. Three positive solutions of a discrete second order conjugate problem. PanAmer. Math. J., 8: 79–96. |
Библиографическая ссылка |
Boucherif, A. 2009. Second-order boundary value problems with integral boundary conditions. Nonlinear Anal. Theory Methods Appl., 70: 364–371. |
Библиографическая ссылка |
Cheung, W. and Ren, J. 2004. Positive solutions for discrete three-point boundary value problems. Aust. J. Math. Anal. Appl., 1: 1–7. |
Библиографическая ссылка |
Eloe, P.W. and Henderson, J. 1997. Positive solutions for conjugate boundary value problems. Nonlinear Anal., 28(10): 1669–1680. |
Библиографическая ссылка |
Graef, J.R., Henderson, J. and Yang, B. 2007. Positive solutions of a nonlinear higher order boundary-value problem. Electron. J. Differ. Equ., 2007(45): 1–10. |
Библиографическая ссылка |
Guo, Y., Shan, W. and Ge, W. 2003. Positive solutions for second order m-point boundary value problems. J. Comput. Appl. Math., 151: 415–424. |
Библиографическая ссылка |
Henderson, J. and Ntouyas, S.K. 2008a. Positive solutions for systems of nonlinear boundary value problems. Nonlinear Stud., 15: 51–60. |
Библиографическая ссылка |
Henderson, J. and Ntouyas, S.K. 2008b. Positive solutions for systems of three-point nonlinear boundary value problems. Aust. J. Math. Anal. Appl., 5(1): 1–9. |
Библиографическая ссылка |
Henderson, J., Ntouyas, S.K. and Purnaras, I.K. 2008a. Positive solutions for systems of three-point nonlinear discrete boundary value problems. Neural Parallel Sci. Comput., 16: 209–224. |
Библиографическая ссылка |
Henderson, J., Ntouyas, S.K. and Purnaras, I. 2008b. Positive solutions for systems of generalized three-point nonlinear boundary value problems. Comment. Math. Univ. Carolin., 49: 79–91. |
Библиографическая ссылка |
Henderson, J., Ntouyas, S.K. and Purnaras, I.K. 2009. Positive solutions for systems of nonlinear discrete boundary value problems. J. Difference Equ. Appl., 15(10): 895–912. |
Библиографическая ссылка |
Il'in, V. and Moiseev, E. 1987a. Nonlocal boundary value problems of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ., 23(7): 803–810. |
Библиографическая ссылка |
Il'in, V.A. and Moiseev, E.I. 1987b. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differ. Equ., 23(8): 979–987. |
Библиографическая ссылка |
Ji, Y., Guo, Y. and Yu, C. 2009. Positive solutions to m-point boundary value problems with dependence on the first order derivative. Appl. Math. Mech. (English Ed.), 30(4): 527–536. |
Библиографическая ссылка |
Li, W.T. and Sun, H.R. 2006. Positive solutions for second-order m-point boundary value problems on times scales. Acta Math. Sin. (Engl. Ser.), 22(6): 1797–1804. |
Библиографическая ссылка |
Luca, R. 2009. Positive solutions for -point discrete boundary value problems. Libertas Math., XXIX: 65–82. |
Библиографическая ссылка |
Ma, R. 1999. Positive solutions of a nonlinear three point boundary value problem. Electron. J. Differ. Equ., 1999(34): 1–8. |
Библиографическая ссылка |
Ma, R. 2001. Positive solutions for second order three-point boundary value problems. Appl. Math. Lett., 14: 1–5. |
Библиографическая ссылка |
Ma, R. 2007. Existence of positive solutions for the symmetry three-point boundary value problem. Electron. J. Differ. Equ., 2007(154): 1–8. |
Библиографическая ссылка |
Ma, R. and Raffoul, Y. 2004. Positive solutions of three-point nonlinear discrete second order boundary value problem. J. Difference Equ. Appl., 10: 129–138. |
Библиографическая ссылка |
Moshinsky, M. 1950. Sobre los problemas de condiciones a la frontiera en una dimension de caracteristicas discontinuas. Bol. Soc. Mat. Mexicana, 7: 1–25. |
Библиографическая ссылка |
Ntouyas, S.K. 2005. “Nonlocal initial and boundary value problems: A survey”. In Handbook of Differential Equations: Ordinary Differential Equations, Vol. 2, 461–557. Elsevier: Amsterdam. |
Библиографическая ссылка |
Song, R. and Lu, H. 2007. Positive solutions for singular nonlinear beam equation. Electron. J. Differ. Equ., 2007(3): 1–9. |
Библиографическая ссылка |
Sun, H.R. and Li, W.T. 2004. Existence of positive solutions for nonlinear three-point boundary value problems on time scales. J. Math. Anal. Appl., 299: 508–524. |
Библиографическая ссылка |
Timoshenko, S. 1961. Theory of Elastic Stability, New York: McGraw-Hill. |
Библиографическая ссылка |
Weigao, G. and Chunyan, X. 2009. Some fixed point theorems and existence of positive solutions of two-point boundary-value problems. Nonlinear Anal. Theory Methods Appl., 70: 16–31. |