Автор |
Braverman, Elena |
Автор |
Karabash, Illya M. |
Дата выпуска |
2012 |
dc.description |
The relation between the following two properties of linear difference equations with infinite delay is investigated: (i) exponential stability and (ii) -input -state stability (Perron's property) which means that solutions of the non-homogeneous equation with zero initial data belong to when non-homogeneous terms are in . It is assumed that at each moment the prehistory (the sequence of preceding states) belongs to some weighted -space with an exponentially fading weight (the phase space). Our main result states that whenever and a certain boundedness condition on coefficients is fulfilled. This condition is sharp and ensures that, to some extent, exponential and -input -state stabilities do not depend on the choice of a phase space and parameters p and q. -input -state stability corresponds to uniform stability. We provide some evidence that similar criteria should not be expected for non-fading memory spaces. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
difference equations |
Тема |
unbounded delay |
Тема |
exponential stability |
Тема |
uniform stability |
Тема |
Perron's property |
Тема |
phase space |
Тема |
39A11 |
Тема |
39A10 |
Тема |
39A06 |
Тема |
39A12 |
Название |
Bohl–Perron-type stability theorems for linear difference equations with infinite delay |
Тип |
research-article |
DOI |
10.1080/10236198.2010.531276 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
18 |
Первая страница |
909 |
Последняя страница |
939 |
Аффилиация |
Braverman, Elena; Department of Mathematics and Statistics, University of Calgary |
Аффилиация |
Karabash, Illya M.; Department of Mathematics and Statistics, University of Calgary; Institute of Applied Mathematics and Mechanics |
Выпуск |
5 |
Библиографическая ссылка |
Aulbach, B. and Van Minh, N. 1996. The concept of spectral dichotomy for linear difference equations, II. J. Differ. Equ. Appl., 2: 251–262. |
Библиографическая ссылка |
Aulbach, B., Van Minh, N. and Zabreiko, P.P. 1994. The concept of spectral dichotomy for linear difference equations. J. Math. Anal. Appl., 185: 275–287. |
Библиографическая ссылка |
Berezansky, L. and Braverman, E. 2004. On Bohl–Perron type theorems for linear difference equations (Dedicated to Istvan Györi on the occasion of his sixtieth birthday). Funct. Differ. Equ., 11(1–2): 19–28. |
Библиографическая ссылка |
Berezansky, L. and Braverman, E. 2005. On exponential dichotomy, Bohl–Perron type theorems and stability of difference equations. J. Math. Anal. Appl., 304: 511–530. |
Библиографическая ссылка |
Berezansky, L. and Braverman, E. 2006. “On exponential dichotomy for linear difference equations with bounded and unbounded delay”. In Differential and Difference Equations and Applications, 169–178. New York: Hindawi Publishing Corp.. |
Библиографическая ссылка |
Bohl, P. 1914. Ueber Differentialungleichungen. J. Reine Angew. Math., 144: 284–313. |
Библиографическая ссылка |
Cardoso, F. and Cuevas, C. 2009. Exponential dichotomy and boundedness for retarded functional difference equations. J. Differ. Equ. Appl., 15: 261–290. |
Библиографическая ссылка |
Coffman, C.V. and Schäffer, J.J. 1967. Dichotomies for linear difference equations. Math. Ann., 172: 139–166. |
Библиографическая ссылка |
Crisci, M.R., Kolmanovskii, V.B., Russo, E. and Vecchio, A. 2000. On the exponential stability of discrete Volterra systems. J. Differ. Equ. Appl., 6: 667–680. |
Библиографическая ссылка |
Crisci, M.R., Kolmanovskii, V.B., Russo, E. and Vecchio, A. 1997. Boundedness of discrete Volterra equations. J. Math. Anal. Appl., 211: 106–130. |
Библиографическая ссылка |
Daleckiˇ, Yu.L. and Krein, M.G. 1974. Stability of Solutions of Differential Equations in Banach Spaces, Providence, RI: AMS. |
Библиографическая ссылка |
Dunford, N. and Schwartz, J.T. 1958. Linear Operators. I. General Theory, New York/London: Interscience Publishers. |
Библиографическая ссылка |
Elaydi, S. 2005. An Introduction to Difference Equations, 3rd ed., New York: Springer. |
Библиографическая ссылка |
Elaydi, S., Messina, E. and Vecchio, A. 2007. On the asymptotic stability of linear Volterra difference equations of convolution type. J. Differ. Equ. Appl., 13: 1079–1084. |
Библиографическая ссылка |
Elaydi, S. and Murakami, S. 1996. Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type. J. Differ. Equ. Appl., 2: 401–410. |
Библиографическая ссылка |
Hino, Y., Murakami, S. and Naito, T. 1991. Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics 1473Berlin: Springer. |
Библиографическая ссылка |
Kolmanovskii, V.B., Castellanos-Velasco, E. and Torres-Muñoz, J.A. 2003. A survey: Stability and boundedness of Volterra difference equations. Nonlinear Anal., 53: 861–928. |
Библиографическая ссылка |
Kolmanovskii, V. and Shaikhet, L. 2003. Some conditions for boundedness of solutions of difference Volterra equations. Appl. Math. Let., 16: 857–862. |
Библиографическая ссылка |
Liz, E. and Ferreiro, J.B. 2002. A note on the global stability of generalized difference equations. Appl. Math. Lett., : 15655–15659. |
Библиографическая ссылка |
Matsunaga, H. and Murakami, S. 2004. Some invariant manifolds for functional difference equations with infinite delay. J. Differ. Equ. Appl., 10: 661–689. |
Библиографическая ссылка |
Matsunaga, H. and Murakami, S. 2005. Asymptotic behavior of solutions of functional difference equations. J. Math. Anal. Appl., 305: 391–410. |
Библиографическая ссылка |
Murakami, S. 1997. Representation of solutions of linear functional difference equations in phase space. Nonlinear Anal. TMA, 30: 1153–1164. |
Библиографическая ссылка |
Ngoc, P.H.A. and Naito, T. 2005. New characterizations of exponential dichotomy and exponential stability of linear difference equations. J. Differ. Equ. Appl., 11: 909–918. |
Библиографическая ссылка |
Perron, O. 1930. Die stabilitatsfrage bei differentialgleichungen. Math. Z., 32: 703–728. |
Библиографическая ссылка |
Pituk, M. 2003. Global asymptotic stability in a perturbed higher order linear difference equation. Comput. Math. Appl., 45: 1195–1202. |
Библиографическая ссылка |
Pituk, M. 2004. A criterion for the exponential stability of linear difference equations. Appl. Math. Lett., 17: 779–783. |
Библиографическая ссылка |
Przyluski, K.M. 1987. Remarks on ℓ<sup>p</sup>-input bounded-state stability of linear controllable infinite-dimensional systems. Syst. Control Lett., 9: 73–77. |
Библиографическая ссылка |
Przyluski, K.M. 1988. Remarks on the stability of linear infinite-dimensional discrete-time systems. J. Differ. Equ., 72: 189–200. |
Библиографическая ссылка |
Sasu, B. 2010. Stability of difference equations and applications to robustness problems. Adv. Differ. Equ., Art. ID 869608, 24 pp |
Библиографическая ссылка |
Sasu, B. and Sasu, A.L. 2004. Stability and stabilizability for linear systems of difference equations. J. Differ. Equ. Appl., 10: 1085–1105. |