Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Braverman, Elena
Автор Karabash, Illya M.
Дата выпуска 2012
dc.description The relation between the following two properties of linear difference equations with infinite delay is investigated: (i) exponential stability and (ii) -input -state stability (Perron's property) which means that solutions of the non-homogeneous equation with zero initial data belong to when non-homogeneous terms are in . It is assumed that at each moment the prehistory (the sequence of preceding states) belongs to some weighted -space with an exponentially fading weight (the phase space). Our main result states that whenever and a certain boundedness condition on coefficients is fulfilled. This condition is sharp and ensures that, to some extent, exponential and -input -state stabilities do not depend on the choice of a phase space and parameters p and q. -input -state stability corresponds to uniform stability. We provide some evidence that similar criteria should not be expected for non-fading memory spaces.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема difference equations
Тема unbounded delay
Тема exponential stability
Тема uniform stability
Тема Perron's property
Тема phase space
Тема 39A11
Тема 39A10
Тема 39A06
Тема 39A12
Название Bohl–Perron-type stability theorems for linear difference equations with infinite delay
Тип research-article
DOI 10.1080/10236198.2010.531276
Electronic ISSN 1563-5120
Print ISSN 1023-6198
Журнал Journal of Difference Equations and Applications
Том 18
Первая страница 909
Последняя страница 939
Аффилиация Braverman, Elena; Department of Mathematics and Statistics, University of Calgary
Аффилиация Karabash, Illya M.; Department of Mathematics and Statistics, University of Calgary; Institute of Applied Mathematics and Mechanics
Выпуск 5
Библиографическая ссылка Aulbach, B. and Van Minh, N. 1996. The concept of spectral dichotomy for linear difference equations, II. J. Differ. Equ. Appl., 2: 251–262.
Библиографическая ссылка Aulbach, B., Van Minh, N. and Zabreiko, P.P. 1994. The concept of spectral dichotomy for linear difference equations. J. Math. Anal. Appl., 185: 275–287.
Библиографическая ссылка Berezansky, L. and Braverman, E. 2004. On Bohl–Perron type theorems for linear difference equations (Dedicated to Istvan Györi on the occasion of his sixtieth birthday). Funct. Differ. Equ., 11(1–2): 19–28.
Библиографическая ссылка Berezansky, L. and Braverman, E. 2005. On exponential dichotomy, Bohl–Perron type theorems and stability of difference equations. J. Math. Anal. Appl., 304: 511–530.
Библиографическая ссылка Berezansky, L. and Braverman, E. 2006. “On exponential dichotomy for linear difference equations with bounded and unbounded delay”. In Differential and Difference Equations and Applications, 169–178. New York: Hindawi Publishing Corp..
Библиографическая ссылка Bohl, P. 1914. Ueber Differentialungleichungen. J. Reine Angew. Math., 144: 284–313.
Библиографическая ссылка Cardoso, F. and Cuevas, C. 2009. Exponential dichotomy and boundedness for retarded functional difference equations. J. Differ. Equ. Appl., 15: 261–290.
Библиографическая ссылка Coffman, C.V. and Schäffer, J.J. 1967. Dichotomies for linear difference equations. Math. Ann., 172: 139–166.
Библиографическая ссылка Crisci, M.R., Kolmanovskii, V.B., Russo, E. and Vecchio, A. 2000. On the exponential stability of discrete Volterra systems. J. Differ. Equ. Appl., 6: 667–680.
Библиографическая ссылка Crisci, M.R., Kolmanovskii, V.B., Russo, E. and Vecchio, A. 1997. Boundedness of discrete Volterra equations. J. Math. Anal. Appl., 211: 106–130.
Библиографическая ссылка Daleckiˇ, Yu.L. and Krein, M.G. 1974. Stability of Solutions of Differential Equations in Banach Spaces, Providence, RI: AMS.
Библиографическая ссылка Dunford, N. and Schwartz, J.T. 1958. Linear Operators. I. General Theory, New York/London: Interscience Publishers.
Библиографическая ссылка Elaydi, S. 2005. An Introduction to Difference Equations, 3rd ed., New York: Springer.
Библиографическая ссылка Elaydi, S., Messina, E. and Vecchio, A. 2007. On the asymptotic stability of linear Volterra difference equations of convolution type. J. Differ. Equ. Appl., 13: 1079–1084.
Библиографическая ссылка Elaydi, S. and Murakami, S. 1996. Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type. J. Differ. Equ. Appl., 2: 401–410.
Библиографическая ссылка Hino, Y., Murakami, S. and Naito, T. 1991. Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics 1473Berlin: Springer.
Библиографическая ссылка Kolmanovskii, V.B., Castellanos-Velasco, E. and Torres-Muñoz, J.A. 2003. A survey: Stability and boundedness of Volterra difference equations. Nonlinear Anal., 53: 861–928.
Библиографическая ссылка Kolmanovskii, V. and Shaikhet, L. 2003. Some conditions for boundedness of solutions of difference Volterra equations. Appl. Math. Let., 16: 857–862.
Библиографическая ссылка Liz, E. and Ferreiro, J.B. 2002. A note on the global stability of generalized difference equations. Appl. Math. Lett., : 15655–15659.
Библиографическая ссылка Matsunaga, H. and Murakami, S. 2004. Some invariant manifolds for functional difference equations with infinite delay. J. Differ. Equ. Appl., 10: 661–689.
Библиографическая ссылка Matsunaga, H. and Murakami, S. 2005. Asymptotic behavior of solutions of functional difference equations. J. Math. Anal. Appl., 305: 391–410.
Библиографическая ссылка Murakami, S. 1997. Representation of solutions of linear functional difference equations in phase space. Nonlinear Anal. TMA, 30: 1153–1164.
Библиографическая ссылка Ngoc, P.H.A. and Naito, T. 2005. New characterizations of exponential dichotomy and exponential stability of linear difference equations. J. Differ. Equ. Appl., 11: 909–918.
Библиографическая ссылка Perron, O. 1930. Die stabilitatsfrage bei differentialgleichungen. Math. Z., 32: 703–728.
Библиографическая ссылка Pituk, M. 2003. Global asymptotic stability in a perturbed higher order linear difference equation. Comput. Math. Appl., 45: 1195–1202.
Библиографическая ссылка Pituk, M. 2004. A criterion for the exponential stability of linear difference equations. Appl. Math. Lett., 17: 779–783.
Библиографическая ссылка Przyluski, K.M. 1987. Remarks on ℓ<sup>p</sup>-input bounded-state stability of linear controllable infinite-dimensional systems. Syst. Control Lett., 9: 73–77.
Библиографическая ссылка Przyluski, K.M. 1988. Remarks on the stability of linear infinite-dimensional discrete-time systems. J. Differ. Equ., 72: 189–200.
Библиографическая ссылка Sasu, B. 2010. Stability of difference equations and applications to robustness problems. Adv. Differ. Equ., Art. ID 869608, 24 pp
Библиографическая ссылка Sasu, B. and Sasu, A.L. 2004. Stability and stabilizability for linear systems of difference equations. J. Differ. Equ. Appl., 10: 1085–1105.

Скрыть метаданые