Автор |
Lugo, G. |
Автор |
Palladino, F. J. |
Дата выпуска |
2012 |
dc.description |
We prove a lemma that gives global asymptotic stability of an equilibrium under appropriate hypotheses. This lemma may be used to strengthen the consequences of the m-M theorem without additional hypotheses. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
difference equation |
Тема |
local stability |
Тема |
global asymptotic stability |
Тема |
m-M theorem |
Тема |
39A10 |
Тема |
39A11 |
Название |
A note on local stability and the m-M theorem |
Тип |
other |
DOI |
10.1080/10236198.2011.555764 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
18 |
Первая страница |
941 |
Последняя страница |
945 |
Аффилиация |
Lugo, G.; Department of Mathematics, University of Rhode Island |
Аффилиация |
Palladino, F. J.; Department of Mathematics, University of Rhode Island |
Выпуск |
5 |
Библиографическая ссылка |
Camouzis, E. and Ladas, G. 2007. Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Boca Raton, FL: Chapman & Hall/CRC Press. |
Библиографическая ссылка |
Kulenović, M.R.S. and Ladas, G. 2002. Dynamics of Second Order Rational Difference Equations, Boca Raton, FL: Chapman & Hall/CRC Press. |
Библиографическая ссылка |
Kulenović, M.R.S., Ladas, G. and Overdeep, C.B. 2004. On the dynamics of with a period-two coefficient. J. Differ. Equ. Appl., 10: 905–914. |
Библиографическая ссылка |
Kulenović, M.R.S., Ladas, G. and Sizer, W.S. 1998. On the recursive sequence . Math. Sci. Res. Hotline, 2: 1–16. |
Библиографическая ссылка |
Kulenović, M.R.S. and Merino, O. 2006. A global attractivity result for maps with invariant boxes. Discrete Contin. Dyn. Syst. Ser. B, 6: 97–110. |
Библиографическая ссылка |
Stević, S. 2008. Boundedness and global stability of a higher-order difference equation. J. Differ. Equ. Appl., 14: 1035–1044. |