Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bridges, C. R.
Дата выпуска 1995
dc.description The oxygen affinity, expressed as the P<sub>50</sub>, of the haemocyanin of most cephalopods so far studied is relatively low (P<sub>50</sub> > 20 Torr in 75% of the studies). At the same time the Bohr effect, the dependence of oxygen affinity on pH, is large (Bohr coefficient < ‐1.0 in 80% of the studies).Spectrophotometric measurements of oxygen dissociation curves of the haemocyanin from Sepia officinalis at high oxygen tensions (>500 Torr) indicate that 100% saturation is not attained at low pH (6.5) compared to high pH (7.5). Cooperativity, expressed as n<sub>50</sub> also decreases with pH and these two characteristics suggest the presence of a Root effect, i.e. a dependence of maximum oxygen carrying capacity (O<sub>2</sub> cap) on pH. Oxygen dissociation curves at low pH however, were not asymptotic, indicating that full saturation may be reached at higher oxygen tensions. Gasometric measurements of oxygen carrying capacity using low pH and high PO<sub>2</sub> values (<650 Torr) also indicated the presence of a Root effect. However, high oxygen pressure measurements (>l atmosphere) in a specially constructed chamber show that 100% saturation was reached at higher oxygen tensions, indicating that this apparent Root effect is not due to an absolute conformational change, as in some fish haemoglobins, but to an exaggerated Bohr effect. Physiologically however, neither such high oxygen pressures nor such low pH values have been measured to date in the blood of cephalopods in vivo making the functional use of a Root effect doubtful.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема Bohr effect
Тема Root effect
Тема apparent Root effect
Тема cephalopods
Тема haemocyanin
Тема O<sub>2</sub> capacity
Тема oxygen pressure
Название Bohr and root effects in cephalopod haemocyanins ‐ paradox or pressure in Sepia officinalis?
Тип research-article
DOI 10.1080/10236249409378912
Electronic ISSN 1029-0362
Print ISSN 1023-6244
Журнал Marine and Freshwater Behaviour and Physiology
Том 25
Первая страница 121
Последняя страница 130
Аффилиация Bridges, C. R.; Institut für Zoologie, Lehrstuhl für Tierphysiologie, Heinrich‐Heine Universität
Выпуск 1-3
Библиографическая ссылка Bridges, C. R., Bicudo, J. E .P. W. and Lykkeboe, G. 1979. Oxygen content measurement in blood containing haemocyanin.. Comp. Biochem. Physiol., 62A: 457–462.
Библиографическая ссылка Bridges, C. R., Hlastala, M. P., Riepl, G. and Scheid, P. 1983. Root effect induced by CO2 and by fixed acid in the blood of the eel, Anguilla anguilla. Respir. Physiol., 51: 275–286.
Библиографическая ссылка Bridges, C. R. and Morris, S. 1986. “Modulation of haemocyanin oxygen affinity by L‐lactate ‐ a role for other cofactors.”. In Invertebrate Oxygen Carriers, Edited by: Linzen, B. 341–352. Heidelberg: Springer Verlag.
Библиографическая ссылка Brittain, T. 1987. Minireview: The Root effect.. Comp. Biochem. Physiol., 86B: 473–481.
Библиографическая ссылка Brix, O., Bårdgard, A., Cau, A., Colosimo, A., Condo, S. G. and Giardina, B. 1989. Oxygen‐binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution.. J. exp. Zool., 252: 34–42.
Библиографическая ссылка Brix, O., Lykkeboe, G. and Johansen, K. 1979. Reversed Bohr and Root shifts in hemocyanin of the marine prosobranch, Buccinum undatum: adaptations to a periodically hypoxic habitat.. J. Comp. Physiol B., 129: 97–103.
Библиографическая ссылка Brix, O., Lykkeboe, G. and Johansen, K. 1981. The significance of the linkage between the Bohr and Haldane effects in cephalopod bloods.. Respir. Physiol., 44: 177–186.
Библиографическая ссылка Brix, O. and Torensma, R. 1981. The molecular basis for the reversed root effect in the blood of the marine prosobranch, Buccinum undatum. Mol. Physiol., 1: 209–212.
Библиографическая ссылка Brunori, M., Coletta, M., Giardina, B. and Wyman, J. 1978. A macromolecular transducer as illustrated by trout hemoglobin IV.. Proc. Natl. Acad. Sci., 75(9): 4310–4312.
Библиографическая ссылка Condo, S. G., Brix, O., Pellegrini, M. G., Corda, M., Cau, A. and Giardina, B. 1990. “Influence of acclimation on subunit composition and functional properties of lobster hemocyanin.”. In Invertebrate Dioxygen Carriers, Edited by: Préaux, G. and Lontie, R. 477–480. Leuven: Leuven University Press..
Библиографическая ссылка DePhillips, H. A., Nickerson, K. W., Johnson, M. and van Holde, K. E. 1969. Oxygen‐linked disassociation of Loligo pealei hemocyanin.. Biochem., 8: 3665–3672.
Библиографическая ссылка Ellerton, H. D., Ellerton, N. F. and Robinson, H. A. 1983. Hemocyanin ‐ a current perspective.. Progress in Biophysics & molecular Biology, 41: 143–248.
Библиографическая ссылка Hamann, U. 1991. Einfluss des pH‐Wertes auf die Sauerstoff‐Affinität von Atmungspigmenten, 60Heinrich‐ Heine University of Düsseldorf. Diplom Thesis
Библиографическая ссылка Houlihan, D. F., Duthie, G., Smith, P. J., Wells, M. J. and Wells, J. 1986. Ventilation and circulation during exercise in Octopus vulgaris. J. Comp. Physiol. B, 156: 683–689.
Библиографическая ссылка Houlihan, D. F., Innes, A. J., Wells, M. J. and Wells, J. 1982. Oxygen consumption and blood gases of Octopus vulgaris in hypoxic conditions.. J. Comp. Physiol., 148: 35–40.
Библиографическая ссылка Johansen, K., Brix, O. and Lykkeboe, G. 1982. Blood gas transport in the cephalopod, Sepia officinalis. J. exp. Biol., 99: 331–338.
Библиографическая ссылка Johansen, K., Redmond, J. R. and Bourne, G. B. 1978. Respiratory exchange and transport of oxygen in Nautilus pompilius. J. exp. Zool., 205: 27–36.
Библиографическая ссылка Kuiper, H. A., Coletta, M., Zolla, L., Chiancone, E. and Brunori, M. 1980. Root effect of Panulirus interruptus hemocyanin.. Biochim. Biophys. Acta., 626: 412–416.
Библиографическая ссылка Lenfant, C. and Johansen, K. 1965. Gas transport by hemocyanin‐containing blood of the cephalopod Octopus dofleini.. Am. J. Physiol., 209(5): 991–998.
Библиографическая ссылка Lykkeboe, G., Brix, O. and Johansen, K. 1980. Oxygen‐linked CO2 binding independent of pH in cephalopod blood.. Nature, 287: 330–331.
Библиографическая ссылка Lykkeboe, G. and Johansen, K. 1982. A cephalopod approach to rethinking about the importance of the Bohr and Haldane effects.. Pacif. Sci., 36: 305–313.
Библиографическая ссылка Mangum, C. P. 1990. “Gas transport in the blood”. In Squid as Experimental Animals, Edited by: Gilbert, D. L., Adelman, W. J. and Arnold, J. M. 443–468. New York: Plenum Publishing Corporation.
Библиографическая ссылка Miller, K. I. 1985. Oxygen equilibria of Octopus dofleini hemocyanin.. Biochem., 24: 4582–4586.
Библиографическая ссылка Miller, K. I. and van Holde, K. E. 1982. The structure of Octopus dofleini hemocyanin.. Comp. Biochem. Physiol., 73B: 1013–1018.
Библиографическая ссылка Miller, K. I. and Mangum, C. P. 1988. An investigation of the nature of Bohr, Root, and Haldane effects in Octopus dofleini hemocyanin.. J. Comp. Physiol. B, 158: 547–552.
Библиографическая ссылка Pelster, B. and Weber, R. E. 1991. The physiology of the root effect.. Adv. Comp. Environ. Physiol, 8: 51–77.
Библиографическая ссылка Pörtner, H. O. 1990. An analysis of the effects of pH on oxygen binding by squid (Illex illecebrosus, Loligo pealei) haemocyanin.. J. exp. Biol., 150: 407–424.
Библиографическая ссылка Pörtner, H. O., Webber, D. M., Boutilier, R. G. and O'Dor, R. K. 1991. Acid‐base regulation in exercising squid (Illex illecebrosus, Loligo pealei).. Am. J. Physiol., 261: R239–R246.
Библиографическая ссылка Redfield, A. C., Coolidge, T. and Hurd, A. L. 1926. The transport of oxygen and carbon dioxide by some bloods containing hemocyanin.. J. Biol. Chem., 69: 475–509.
Библиографическая ссылка Redfield, A. C. and Goodkind, R. 1929. The significance of the Bohr effect in the respiration and asphyxiation of the squid, Loligo pealei. J. exp. Biol., 6: 340–349.
Библиографическая ссылка Redfield, A. C. and Ingalls, E. N. 1933. The oxygen dissociation curves of some bloods containing hemocyanin.. J. Cell. Comp. Physiol., 3: 169–202.
Библиографическая ссылка Root, R. W. 1931. The respiratory function of the blood of marine fishes.. Biol. Bull., 61: 427–456.
Библиографическая ссылка Scholander, P. F. and van Dam, L. 1954. Secretion of gases against high pressures in the swimbladder of deep sea fishes. I. Oxygen dissociation in blood.. Biol. Bull., 107: 247–259.
Библиографическая ссылка Steen, J. B. 1963. The physiology of the swimmbladder of the eel Anguilla vulgaris. I. The solubility of gases and the buffer capacity of the blood.. Acta Physiol. Scand., 58: 124–137.
Библиографическая ссылка Wolvekamp, H. P. 1938. Über der Sauerstofftransport durch Hamocyanin von Octopus vulgaris Lam. und Sepia officinalis L.. Z. Vergl. Physiol., 25: 541–547.
Библиографическая ссылка Wolvekamp, H. P., Baerends, G. P., Kok, B. and Mommaerts, W. F. H. M. 1942. O2 and CO2‐Binding properties of the blood of the cuttle fish (Sepia officinalis L.) and the common squid (Loligo vulgaris Lam.).. Arch, neerl. Physiol., 28: 620–630.

Скрыть метаданые