Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор De Simone, C.
Автор Rinaldi, G.
Дата выпуска 1994
dc.description In this paper we describe a cutting plane algorithm to solve max-cut problems on complete graphs. We show that the separation problem over the cut polytope can be reduced to the separation problem over the cut cone and we give a separation algorithm for a class of inequalities valid over the cut cone: the hypermetric inequalities. Computational results are given.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Polyhedral Combinatorics
Тема Separation Problem
Тема Maximum Cut Problem
Тема Hypermetric Inequality
Название A cutting plane algorithm for the max-cut problem
Тип other
DOI 10.1080/10556789408805564
Electronic ISSN 1029-4937
Print ISSN 1055-6788
Журнал Optimization Methods and Software
Том 3
Первая страница 195
Последняя страница 214
Аффилиация De Simone, C.; Istituto di Analisi dei Sistemi ed Inforrnatica del CNR
Аффилиация Rinaldi, G.; Istituto di Analisi dei Sistemi ed Inforrnatica del CNR
Выпуск 1-3
Библиографическая ссылка Barahona, F. and Mahjoub, A. R. 1986. On the cut polytope. Mathematical Programming, 36: 157–173.
Библиографическая ссылка Barahona, F., Jünger, M. and Reinelt, G. 1989. Experiments in quadratic 0-1 Programming. Mathematical Programming, 44: 127–137.
Библиографическая ссылка Carter, M. W. 1984. The indefinite zero-one quadratic problem. Discrete Applied Mathematics, 7: 23–44.
Библиографическая ссылка De Simone, C. 1989. The Cut Polytope and the Boolean Quadric Polytope. Discrete Mathematics, 79: 71–75.
Библиографическая ссылка De Simone, C., Deza, M. and Laurent, M. Proceedings of the Second Japan Conference on Graph Theory and Combinatorics . August. pp.18–22. Hakone, , Japan
Библиографическая ссылка De Simone, C. 1991. The Max Cut Problem, Rutgers University. Ph. D. Thesis
Библиографическая ссылка Deza, M. and Laurent, M. 1992. Facets for the cut cone I. Mathematical Programming, 56: 121–160.
Библиографическая ссылка Grishukhin, V. P. 1990. All facets of the Hamming cone for n=7 are known. European Journal of Combinatorics, 11: 115–117.
Библиографическая ссылка Padberg, M. and Rinaldi, G. 1991. A Branch-and Cut Algorithm for the Resolution of Large-Scale Symmetric Travelling Salesman Problems. SIAM Review , 11: 60–100.
Библиографическая ссылка Williams, A. C. 1985. “Quadratic 0-1 programming using the roof dual with computational results, RUTCOR Research Report 8-85”. The State Univ. of New Jersey..

Скрыть метаданые