Автор |
Friedlander, Ana |
Автор |
Mario Martínez, José |
Автор |
Raydon, Marcos |
Дата выпуска |
1995 |
dc.description |
In this paper, we present a new method for minimizing a convex quadratic function of many variables with box constraints. The new algorithm is a modification of a method introduced recently by Friedlander and Martinez {SIAM J. on Optimization, February 1994). Following the lines of More and Toraldo (SIAM J. on Optimization 1, pp. 93-113), it combines an efficient unconstrained method with gradient projection techniques. The strategy for “leaving the current face” makes it possible to obtain convergence even when the Hessian is singular. Dual nondegeneracy is not assumed anywhere. The unconstrained minimization algorithm used within the faces was introduced by Barzilai and Borwein and analyzed by Raydan (IMA Journal of Numerical Analysis13, pp. 321-326) |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Quadratic Programming |
Тема |
Bound Constrained Problems |
Тема |
Projected Gradients |
Тема |
Barzilai-Borwein Method |
Название |
A new method for large-scale box constrained convex quadratic minimization problems |
Тип |
research-article |
DOI |
10.1080/10556789508805602 |
Electronic ISSN |
1029-4937 |
Print ISSN |
1055-6788 |
Журнал |
Optimization Methods and Software |
Том |
5 |
Первая страница |
57 |
Последняя страница |
74 |
Аффилиация |
Friedlander, Ana; Department of Applied Mathematics, Uiversity of Campinas |
Аффилиация |
Mario Martínez, José; Department of Applied Mathematics, Uiversity of Campinas |
Аффилиация |
Raydon, Marcos; Department of Mathematics, Central University of Venezuela |
Выпуск |
1 |
Библиографическая ссылка |
Barzilai, J. and Borwein, J.M. 1988. Two point step size gradient methods. IMA Journal of Numerical Analysis, 8: 141–148. |
Библиографическая ссылка |
Bertsekas, D.P. 1982. Projected Newton methods for optimization problems wih simple constraints. SIAM J. Control and Optimization, 20: 221–246. |
Библиографическая ссылка |
Cea, J. and Glowinski, R. 1983. Sur des méthodes d'optimisation par relaxation. RAIRO R-3, 20: 5–32. |
Библиографическая ссылка |
Coleman, T.F. and Hulbert, L.A. 1989. A direct active set algorithm for large sparse quadratic programs with simple bounds. Mathematical Programming, 45: 373–406. |
Библиографическая ссылка |
Coleman, T.F. and Hulbert, L.A. 1990. A globally and superlinearly convergent algorithm for convex quadratic programs with simple bounds, N.Y: Cornell University Ithaca. Technical Report 90-1092, Dept. of Computer Science |
Библиографическая ссылка |
Dembo, R.S. and Tulowitzki, U. 1987. On the minimization of quadratic functions subject to DOX constraints, Connecticut, New Haven: Yale University. Working paper series B-71 School of Organization and Management |
Библиографическая ссылка |
Fletcher, R. 1987. Practical Methods of Optimization, Chichester, , Singapore: John Wiley and Sons. Brisbane, Toronto |
Библиографическая ссылка |
Friedlander, A. and Martinez, J.M. 1989. On the numerical solution of bound constrained optimization problems. RAIRO Operations Research, 23: 319–341. |
Библиографическая ссылка |
Friedlander, A. and Martinez, J.M. 1994. On the maximization of a concave quadratic function with box constraints. SIAM Journal on optimization, 4: 177–192. |
Библиографическая ссылка |
Gill, P.E., Murray, W. and Wright, M.H. 1981. Practical Optimization, London, New York: Academic Press. |
Библиографическая ссылка |
Golub, G.H. and Loan, Van. 1989. Matrix Computations, London: The Johns Hopkins University Press. Baltimore |
Библиографическая ссылка |
Herman, G.T. 1980. Image Reconstruction from Projections;The Fundamentals of Computerized Tomography, New York: Academic Press. |
Библиографическая ссылка |
Hestenes, M.R. and Stiefel, E. 1952. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stds, B49: 409–436. |
Библиографическая ссылка |
Lötstedt, P. 1984. Solving the minimal least squares problem subject to bounds on the variables. BIT, 24: 206–224. |
Библиографическая ссылка |
Moré, J.J. and Toraldo, G. 1991. On the solution of large quadratic programming problems with bound constraints. SIAM Journal on Optimization, 1: 93–113. |
Библиографическая ссылка |
Nickel, R.H. and Tolle, J.W. 1989. A sparse sequential programming algorithm. Journal of Optimization Theory and Applications, 60: 453–473. |
Библиографическая ссылка |
OLeary, D.P. 1980. A generalized conjugate gradient algorithm for solving a class of quadratic programming problems. Linear Algebra and its Applications, 34: 371–399. |
Библиографическая ссылка |
Raydan, M. 1993. On the Barzilai and Borwein choice of steplength for the gradient method. IMA Journal of Numerical Analysis, 13: 31–326. |
Библиографическая ссылка |
Wright, S.J. 1989. Implementing Proximal Point Methods for Linear Programming, Vol. 11, Argonne: Argonne National Laboratory. Preprint MCS-P45-0189, Mathematics and Computer Science Division |
Библиографическая ссылка |
Yang, E.K. and Tolle, J.W. 1986. A class of methods for solving large, convex quadratic programs subject to box constraints, Chapel Hill, , NC: University of North Carolina. Technical Report no. UNC/ORSA/TR-86-3, Dept of Operations Research and Systems Analysis |