Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор García-Palomares, Ubaldo M.
Дата выпуска 1995
dc.description We describe an Armijo-Newton like procedure that locates a feasible point of a non empty system of nonlinear inequalities (and linear equations) in a finite number of operations. Assuming differentiability and Positive Linearly Independence (PLI) of the gradients of the most violated inequalities, the sequence of iterates converges to the relative interior of the given system. At each iteration a linear feasibility problem with a small number of constraints is solved. Preliminary numerical experiments on small systems are encouraging: Systems of up to 80 inequalities and 40 variables have been solved in fewer than 20 iterations. A Pseudocode and hints on how to choose the parameters involved are given
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Feasibility
Тема Inequalities
Тема Armijo-Newton Methods
Название A finite procedure for finding a point satisfying a system of inequalities
Тип research-article
DOI 10.1080/10556789508805607
Electronic ISSN 1029-4937
Print ISSN 1055-6788
Журнал Optimization Methods and Software
Том 5
Первая страница 157
Последняя страница 171
Аффилиация García-Palomares, Ubaldo M.; Universidad Simón Bolívar, Dep. de Procesos y Sistemas
Выпуск 2
Библиографическая ссылка Aharoni, R., Berman, A. and Censor, Y. 1983. An Interior Points Algorithm for the Convex Feasibility Problem, Adv. in App. Math, 4: 479–489.
Библиографическая ссылка Ben-Israel, A. On Newton's Method in Nonlinear Programming. in Proc. Princeton Symp. Math Prog. Princeton. Edited by: Kohn, H.
Библиографическая ссылка Bregman, L.M. 1967. The Relaxation Method of Finding the Common Point of Convex Sets and its Application to the Solution of Problems in Convex Programming. USSR Comp. Math, and Math. Phys, 7: 200–217.
Библиографическая ссылка Burke, J. and Han, S.P. 1986. A Gauss-Newton approach to solving generalized inequalities. Math. Op. Res, 11(4): 632–643.
Библиографическая ссылка Censor, Y. and Lent, A. 1981. An Iterative row-action Method for Interval Convex Programming. Opt. Th. and App, 34(4): 321–353.
Библиографическая ссылка Censor, Y. and Lent, A. 1982. Cyclic Subgradient Projections, Math. Prog, 24(4): 233–235.
Библиографическая ссылка Claverie, M. 1993. “Acerca de la Solucion de un Sistema de Igualdades y Desigualdates no Lineales: Un Algoritmo Eficiente”. In Trabajo de ascenso a Prof, Titular: Universidad Simón Bolivar.
Библиографическая ссылка Daniel, J.W. 1973. Newton's Method for Nonlinear Inequalities. Numer. Math, 21: 381–387.
Библиографическая ссылка Demyanov, V.F. and Malozemov, V.N. 1974. Introduction to MiniMax, New York: Wiley.
Библиографическая ссылка Dien, P.H. and Phung, H.T. 1988. An Algorithm for Finding a Solution to Inclusion O∈F(x) Hanoi, , Vietnam Tech. Rep. Inst. of Math
Библиографическая ссылка Eremin, I.I. 1965. The Relaxation Method of Solving Systems of Inequalities with Convex Functions on the Left Side. Soviet Math. Doklady, 6: 219–222.
Библиографическая ссылка Eremin, I.I. 1970. On Systems of Inequalities with Convex Functions in the Left Sides. Amer. Math. Soc. TransL, 88(2): 67–83.
Библиографическая ссылка FarcíPalomares, U.M. 1990. A Class of Methods for Solving Large Convex Systems. Op. Res. Let, 9(2): 183–187.
Библиографическая ссылка García-Palomares, U. 1991. Algoritmo Finito para Resolver un Sistema de Desigualdades Venezuela, Maracaibo XLI AsoVAC
Библиографическая ссылка García-Palomares, U.M. 1993. Parallel Projected Aggregation Methods for Solving the Convex Feasibility Problem. SIAMJ. Opt, : 882–900.
Библиографическая ссылка García-Palomares, U.M. and Restuccia, A. 1981. A Global Quadratic Algorithm for Solving a System of Mixed Equalities and Inequalities. Math. Prog, 21: 290–300.
Библиографическая ссылка Gubin, L.G., Polyak, B.T. and Raik, E.V. 1967. The Method of Projections for Finding the Common Point of Convex Sets. USSR Comp. Math, and Math. Phys, 7: 1–24.
Библиографическая ссылка Han, S.P. and Mangasarian, O.L. 1979. Exact Penally Functions in Nonlinear Programming. Math. Prog, 17(3): 251–269.
Библиографическая ссылка Huang, T.J. 1973. Algorithms for Solving Systems of Equations and Inequalities with Applications in Nonlinear Programming, University of Wisconsin. Comp. Sci. Dep
Библиографическая ссылка Lenard, M.L. and Minkoff, M. 1984. Randomly Generated Test Problems for Positive Definite Quadratic Programming. ACM Trans on Math. Soft, 10: 86–96.
Библиографическая ссылка Madsen, K. and Schjaer-Jaobsen, H. 1978. Linearly Constrained MiniMax Optimization. Math. Prog, 14(2): 208–223.
Библиографическая ссылка Mayne, D.Q., Polak, E. and Heunis, A.J. 1981. Solving Nonlinear Inequalities in a Finite Number of Iterations. J. of Opt. Th. and App, 33(2): 207–222.
Библиографическая ссылка Mayne, D.Q. and Shaba, H. 1985. An Efficient Algorithm for Solving Inequalities. J. Opt. Th. and App, 45(3): 24–23.
Библиографическая ссылка Pierro, A.R. and Iusem, A. 1988. A Finitely Convergent row-action Method for the Convex Feasibility Problem. App. Math, and Opt, 17(3): 225–235.
Библиографическая ссылка Polak, E. and Mayne, D. 1979. On the Finite Solution of Nonlinear Inequalities. IEEE Trans, on Aut. Com, 24(3): 443–444.
Библиографическая ссылка Pshenichnyi, B.N. 1970. Newton's Method for the Solution of Systems of Equalities and Inequalities. Mat. Notes Acad. ofSc. of USSR, 8(3): 827–830.
Библиографическая ссылка Robinson, S.M. 1972. Extension of Newton's Method for Nonlinear Functions with Values in a Cone. Numer. Math, 19(3): 341–347.
Библиографическая ссылка Robinson, S.M. 1976. A Subgradient Algorithm for Solving K-Convex Inequalities, Edited by: Beckman, M. and Künzi, H.P. 237–245. Springer Verlag. Lecture Notes in Economics and Mathematical Systems

Скрыть метаданые