Автор |
Kanzow, Christian |
Автор |
Kleinmichel, Helmut |
Дата выпуска |
1995 |
dc.description |
We consider the nonlinear programming problem with equality and inequality constraints. In order to find a Kuhn–Tucker point, we use an equivalent formulation of the Kuhn-Tucker conditions consisting of nonlinear equations only. Then Newton's method is used to solve this system of nonlinear equations. Thus, we have to solve only one linear system at each iteration. By using a decomposition principle, we are able to reduce the dimension of this linear system. Some quasi–Newton variants and a local convergence theory are given. Finally, we present the results of some numerical experiments |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Nonlinear Programming |
Тема |
Constrained Optimization |
Тема |
Complementarity Problems |
Тема |
Kuhn-Tucker Conditions |
Тема |
Newton's Method |
Тема |
Quasi-Newton Methods |
Тема |
Decomposition |
Название |
A Class of Netwton-Type methods for equality and ineqality constrained optimization |
Тип |
other |
DOI |
10.1080/10556789508805608 |
Electronic ISSN |
1029-4937 |
Print ISSN |
1055-6788 |
Журнал |
Optimization Methods and Software |
Том |
5 |
Первая страница |
173 |
Последняя страница |
198 |
Аффилиация |
Kanzow, Christian; Institute of Applied Mathematics, University of Hamburg |
Аффилиация |
Kleinmichel, Helmut; Institute for Numerical Mathematics, Technical University of Dresden |
Выпуск |
2 |
Библиографическая ссылка |
Abadie, J. 1986. “Generalized reduced gradient and global Newton methods”. In Optimization and Related Fields; Lecture Notes in Mathematics 1190, Edited by: Conti, R., Dj Giorgi, E. and Gianessi, F. 1–20. Berlin, , Germany: Springer-Verlag. |
Библиографическая ссылка |
Coleman, T.F. and Fenyes, P. 1992. Partitioned quasi-Newton methods for nonlinear equality constrained optimization. Mathematical Programming (Series A), 53: 17–44. |
Библиографическая ссылка |
Dennis, J.E. Jr and Moré, J. 1974. A characterization of superlinear convergence and its application to quasi-Newton methods. Mathematics of Computation, 28: 549–560. |
Библиографическая ссылка |
Dennis, J.E. Jr and Schnabel, R.B. 1983. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, New Jersey: Prentice Hall. |
Библиографическая ссылка |
Evtushenko, Yu.G and Purtov, V.A. 1984. Sufficient conditions for a minimum for nonlinear programming problems. Soviet Math. Dold, 30: 313–316. |
Библиографическая ссылка |
Fischer, A. 1992. A special Newton-type optimization method. Optimization, 24: 269–284. |
Библиографическая ссылка |
Fletcher, R. 1987. Practical Methods of Optimization, Chichester: John Wiley & Sons. |
Библиографическая ссылка |
Grippo, L., Lampariello, F. and Lucidi, S. 1986. Anonmonotone line search technique for Newton's method. SIAM Journal on Numerical Analysis, 23: 707–716. |
Библиографическая ссылка |
Han, S.P. 1977. A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications, 22: 297–309. |
Библиографическая ссылка |
Hock, W. and Schittkowski, K. 1981. “Test Examples for Nonlinear Programming Codes”. In Lecture Notes in Economics and Mathematical Systems, Vol. 187, Berlin, , Germany: Springer-Verlag. |
Библиографическая ссылка |
Kanzow, C. 1991. “Newton-Typ-Verfahren in der restringierten Optimierung”. In Diploma thesis, Institute of Applied Mathematics, Germany: University of Hamburg. |
Библиографическая ссылка |
Kanzow, C. 1994. Some equation-based methods for the nonlinear complementarity problem. Optimizaδion Methods and Software, 3: 327–340. |
Библиографическая ссылка |
Kleinmichel, H. 1982. “Zur Anwendung von Quasi-Newton-Verfahren in der restringierten Optimierung”. In Dissertation B, Dresden, , Germany: Sektion Mathematik. |
Библиографическая ссылка |
Kleinmichel, H., Richter, C. and Schönefeld, K. 1992. On a class of hybrid methods for smooth constrained optimization. Journal of Optimization Theory and Applications, 73: 465–499. |
Библиографическая ссылка |
Kleinmichel, H. and Schönefeld, K. 1988. Newton-type methods for nonlinearly constrained programming problems — algorithms and theory. Optimization, 19: 397–412. |
Библиографическая ссылка |
Kleinmichel, H. and Schönefeld, K. 1989. “Newton-type methods for nonlinearly constrained programming problems”. In PASCAL-program and numerical experiments, Vol. 38, 219–224. Dresden: Wissenschaftliche Zeitschrift der Technischen Universitat. |
Библиографическая ссылка |
Kleinmichel, H. and Schönefeld, K. 1989. “Superlinearly convergent optimization methods without solving QP”. In Sektion Mathematik Vol. 11-89, Dresden, , Germany |
Библиографическая ссылка |
Kojima, M. and Shindo, S. 1986. Extension of Newton and quasi-Newton methods to systems of PC1 equations. Journal of the Operations Research Society of Japan, 29: 352–374. |
Библиографическая ссылка |
Kosmol, P. 1989. Methoden zur numerischenBehandlung nichtlinearer Gleichungen und Optimierungsauf-gaben, Stuttgart, , Germany: Teubner-Verlag. |
Библиографическая ссылка |
Mangasarian, O.L. 1976. Equivalence of the complementarity problem to a system of nonlinear equations. SIAM Journal on Applied Mathematics, 31: 89–92. |
Библиографическая ссылка |
Mangasarian, O.L. and Solodov, M.V. 1992. :Nonlinear complementarity as unconstrained and constrained minimization, Madison: University of Wisconsin. Technical Report* 1074, Computer Sciences Department |
Библиографическая ссылка |
Nocedal, J. and Overton, M.L. 1985. Projected Hessian updating algorithms for nonlinearly constrained optimization. SIAM Journal on Numerical Analysis, 22: 821–850. |
Библиографическая ссылка |
Ortega, J.M. and Rheinboldt, W.C. 1970. Iterative Solution of Nonlinear Equations in Several Variables, London, New York: Academic Press. |
Библиографическая ссылка |
Pang, J.S. 1991. A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems. Mathematical Programming, 51: 101–131. Series A |
Библиографическая ссылка |
Powell, M.J.D. 1978. “A fast algorithm for nonlinearly constrained optimization calculus”. In Lecture Notes in MathematicS, Vol. 630, 144–157. Berlin, , Germany: Springer-Verlag. |
Библиографическая ссылка |
Powell, M.J.D. 1978. “The convergence of variable metric methods for nonlinearly constrained optimization calculations”. In Nonlinear Programming, Edited by: Mangasarian, O.L., Meyer, R.R. and Robinson, S.M. Vol. 3, 27–63. New York: Academic Press. |
Библиографическая ссылка |
Purtov, V.A. 1991. “Fast convergent nonlinear programming methods”. In Numerical Methods of Nonlinear Programming and their Implementations, Edited by: Richter, C., Hollatz, H. and Pallaschke, D. 87–98. Berlin, , Germany: Akademie-Verlag. |
Библиографическая ссылка |
Schittkowski, K. 1981. The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian line search function. Parts 1+2, Numerische Mathematik, 38: 83–127. |
Библиографическая ссылка |
Schittkowski, K. 1983. On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Mathematische Operationsforschung und Statistik, Series Optimization, 14: 197–216. |
Библиографическая ссылка |
Schönefeld, K. 1989. “Uber lokale Optimierungsverfahren und deren Kopplung mit global konvergenten Verfahren”. In Dissertation B, Dresden, , Germany: Sektion Mathematik. |
Библиографическая ссылка |
Schönefeld, K. 1990. A superlinearly and globally convergent optimization method independent of strict complementary slackness, Dresden, , Germany: Sektion Mathematik. Preprint 07-16-90 |
Библиографическая ссылка |
Subramanian, P.K. 1993. Gauss-Newton methods for the complementarity problem. Journal of Optimizaδion Theory and Applications, 77: 467–482. |
Библиографическая ссылка |
Tone, K. 1983. Revisions of constraint approximations in the successive QP method for nonlinear programming problems. Mathematical Programming (Series A), 26: 144–152. |
Библиографическая ссылка |
Wierzbicki, A.P. 1982. Note on the equivalence of Kuhn-Tucker complementarity conditions to an equation. Journal of Optimization Theory and Applications, 37: 401–405. |