Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Nazareth, J.L.
Дата выпуска 1995
dc.description An approach to interior methods for linear programming premised on the optimality condition and two fundamental optimization principles (homotopy and symmetry) is described. It provides a concise, yet general introduction to the new area of optimization research germinated by Karmarkar, and a useful alternative to the current logarithmic Barrier-based perspective on the subject
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Название A framework for interior methods of linear programming
Тип research-article
DOI 10.1080/10556789508805612
Electronic ISSN 1029-4937
Print ISSN 1055-6788
Журнал Optimization Methods and Software
Том 5
Первая страница 227
Последняя страница 234
Аффилиация Nazareth, J.L.; Department of Pure and Applied Mathematics, Washington State University; Department of Applied Mathematics, University of Washington
Выпуск 3
Библиографическая ссылка Allgower, E.L. and Georg, K. 1990. “Numerical Continuation Methods: An Introduction”. In Series in Computational Mathematics, Vol. 13, Heidelberg: Springer-Verlag.
Библиографическая ссылка Garcia, C.B. and Zangwill, W.I. 1981. “Pathways to Solutions”. In Fixed Point and Equilibria, Englewood Cliffs, NJ: Prentice-Hall.
Библиографическая ссылка Gill, P.E., Murray, W., Ponceleón, D.B. and Saunders, M.A. 1991. “Primal-dual methods for linear programming”. In Systems Optimization Laboratary, Stanford, CA: Stanford University. Technical Report 91-3
Библиографическая ссылка Gonzaga, C.G. 1992. Path-following methods for linear programming. SIAM Review, 34: 167–224.
Библиографическая ссылка Hirsch, M.W. and Smale, S. 1979. On algorithms for solving F(x) = 0. Comm. Pure Appl. Math, 32: 281–312.
Библиографическая ссылка Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica, 4: 373–395.
Библиографическая ссылка Keller, H.B. 1987. Lectures on Numerical Methods in Bifurcation Problems, Heidelberg: Springer-Verlag.
Библиографическая ссылка Lustig, I.J., Marsten, R.E. and Shanno, D. 1992. On implementing Mehrotra's predictor-corrector interior point method for linear programming. SIAM J. Optimization, 2: 435–449.
Библиографическая ссылка Lustig, I.J., Marsten, R.E. and Shanno, D. 1994. Interior point methods for linear programming: computational state of the art. ORSA J. on Computing, 6: 1–14. with commentaries by R. Bixby, M. Saunders, M. Todd and R. Vanderbei, 15-34, and a rejoinder, 35-36
Библиографическая ссылка Marsten, R., Subramanain, R., Saltzman, M., Lustig, I.J. and Shanno, D. 1990. Interior point methods for linear programming: Just call Newton, Lagrange, and Fiacco and McCormick!. Interfaces, 20: 105–116.
Библиографическая ссылка Nazareth, J.L. 1986. Homotopy techniques in linear programming. Algorithmica, 1: 529–535.
Библиографическая ссылка Nazareth, J.L. The homotopy principle and algorithms for linear programming. Presented at IIAS A Workshop on Nonstandard Optimization Methods and Related Topics. August1–41989, Laxenburg. Austria: Vienna. appears in SIAMJ. Optimization, 1, 316-332 (1991
Библиографическая ссылка Nazareth, J.L. 1994. “Deriving potential functions via a symmetry principle for nonlinear equations”. In Department of Pure and Applied Mathematics, Pullman, WA: Washington State University. Technical Report 94—2
Библиографическая ссылка Nesterov, Y.E. and Nemirovskii, A. 1994. “Interior-Point Polynomial Algorithms in Convex Programming”. In SIAM Studies in Applied Mathematics, Vol. 13, Philadelphia: SIAM.
Библиографическая ссылка Ortega, J.M. and Rheinboldt, W.C. 1970. Iterative Solution of Nonlinear Equations in Several Variables, N.Y: Academic Press.
Библиографическая ссылка Polak, E. 1971. Computational Methods in Optimization: A Unified Approach, Academic Press.
Библиографическая ссылка Renegar, J. 1993. “Linear programming, complexity theory and elementary functional analysis”. In Department of OR&IE, Ithaca, NY: Cornell University. preprint, revised Summer, 1994
Библиографическая ссылка Renegar, J. and Shub, M. 1988. “Simplified complexity analysis for Newton LP methods”. In School of Operations Research and Industrial Engineering, Ithaca, NY: Cornell University. Report No. 807
Библиографическая ссылка Smale, S. 1976. A convergent process of price adjustment and globalNewtonmethods. J Math Econom, 3: 1–14.
Библиографическая ссылка Strang, G. 1986. Introduction to Applied Mathematics, Cambridge, MA: Wellesley-Cambridge Press.
Библиографическая ссылка Tapia, R. and Zhang, Y. 1992. On the quadratic convergence of the singular Newton's method. SIAG/OPT Views-and-News, 1 Fall: 6–8. 1992

Скрыть метаданые