Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Broyden, C.G.
Дата выпуска 1995
dc.description In this paper we show that many important algorithms of conjugate gradient type may be regarded merely as particular versions of the block method proposed by O'Leary, and argue that the use of this method as a theoretical tool will result in simplifications of great value to the theory. This argument is supported by the inclusion here of a new method whose existence the author had long suspected but had been unable to find prior to exploiting this simplification
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Conjugate Gradients
Тема Biconjugate Gradients
Тема Biconjugate Residuals
Тема Linear Systems
Тема Hegediis Methods
Тема Block Methods
Название A note on the block conjugate gradient method of O'leary
Тип research-article
DOI 10.1080/10556789508805620
Electronic ISSN 1029-4937
Print ISSN 1055-6788
Журнал Optimization Methods and Software
Том 5
Первая страница 347
Последняя страница 350
Аффилиация Broyden, C.G.; Facoltá di Scienze MM. FF. NN, Universitá di Bologna
Выпуск 4
Библиографическая ссылка Boschetti, M.A. 1993. Nuovi Algoritmi Basati sui Metodi Gradienti Coniugati, Universitá di Bologna. Tesi di Laurea
Библиографическая ссылка Broyden, C.G. A Taxonomy of Conjugate Gradient Methods, in Numerical Algebra. Proceedings of the '92 Shanghai International Numerical Algebra and its Applications Conference. Edited by: Er-xiong, Jiang. Shanghai: China Science and Technology Press.
Библиографическая ссылка Fletcher, R. Conjugate Gradient Methods for Indefinite Systems. Proc. Dundee Conference on Numerical Analysis. Edited by: Watson, G.A. Springer: Berlin-Heidelberg. Lecture Notes in Mathematics 506
Библиографическая ссылка Hegedüs, Cs.J. 1990. Generating Conjugate Directions for Arbitrary Matrices by Matrix Equations, Budapest: Hungarian Academy of Sciences, Central Research Institute for Physics. Parts 1 and 2, Report No. KFKI-1990-36/M
Библиографическая ссылка Hegedüs, Cs.J. 1991. “Generation of Conjugate Directions for Arbitrary Matrices and Solution of Linear Systems”. In in Computer algorithms for solving linear algebraic equations: The state of the art (NATO Advanced Study Institute, contributed papers), Edited by: Spedicato and Vespucci. University of Bergamo research report.
Библиографическая ссылка Hestenes, M.R. and Stiefel, E. 1952. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. Bureau of Standards, 49: 409–436.
Библиографическая ссылка Lanczos, C. 1950. Solution of Systems of Linear Equations by Minimized Iterations. J. Res. Nat Bur. Standards, 49: 255–282.
Библиографическая ссылка OLeary, D.P. 1980. The Block Conjugate Gradient Algorithm and Related Methods. Linear Algebra Applies, 29: 293–322.
Библиографическая ссылка OLeary, D.P. 1987. Parallel implementation of the block conjugate gradient algorithm. Parallel Computing, 5: 127–139.
Библиографическая ссылка Simoncini, V. and Gallopoulos, E. 1987. An iterative method for nonsymmetric systems with multiple right-hand sides. SIAM J. Sci. Comput, 5 to appear

Скрыть метаданые