Автор |
Broyden, C.G. |
Дата выпуска |
1995 |
dc.description |
In this paper we show that many important algorithms of conjugate gradient type may be regarded merely as particular versions of the block method proposed by O'Leary, and argue that the use of this method as a theoretical tool will result in simplifications of great value to the theory. This argument is supported by the inclusion here of a new method whose existence the author had long suspected but had been unable to find prior to exploiting this simplification |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Conjugate Gradients |
Тема |
Biconjugate Gradients |
Тема |
Biconjugate Residuals |
Тема |
Linear Systems |
Тема |
Hegediis Methods |
Тема |
Block Methods |
Название |
A note on the block conjugate gradient method of O'leary |
Тип |
research-article |
DOI |
10.1080/10556789508805620 |
Electronic ISSN |
1029-4937 |
Print ISSN |
1055-6788 |
Журнал |
Optimization Methods and Software |
Том |
5 |
Первая страница |
347 |
Последняя страница |
350 |
Аффилиация |
Broyden, C.G.; Facoltá di Scienze MM. FF. NN, Universitá di Bologna |
Выпуск |
4 |
Библиографическая ссылка |
Boschetti, M.A. 1993. Nuovi Algoritmi Basati sui Metodi Gradienti Coniugati, Universitá di Bologna. Tesi di Laurea |
Библиографическая ссылка |
Broyden, C.G. A Taxonomy of Conjugate Gradient Methods, in Numerical Algebra. Proceedings of the '92 Shanghai International Numerical Algebra and its Applications Conference. Edited by: Er-xiong, Jiang. Shanghai: China Science and Technology Press. |
Библиографическая ссылка |
Fletcher, R. Conjugate Gradient Methods for Indefinite Systems. Proc. Dundee Conference on Numerical Analysis. Edited by: Watson, G.A. Springer: Berlin-Heidelberg. Lecture Notes in Mathematics 506 |
Библиографическая ссылка |
Hegedüs, Cs.J. 1990. Generating Conjugate Directions for Arbitrary Matrices by Matrix Equations, Budapest: Hungarian Academy of Sciences, Central Research Institute for Physics. Parts 1 and 2, Report No. KFKI-1990-36/M |
Библиографическая ссылка |
Hegedüs, Cs.J. 1991. “Generation of Conjugate Directions for Arbitrary Matrices and Solution of Linear Systems”. In in Computer algorithms for solving linear algebraic equations: The state of the art (NATO Advanced Study Institute, contributed papers), Edited by: Spedicato and Vespucci. University of Bergamo research report. |
Библиографическая ссылка |
Hestenes, M.R. and Stiefel, E. 1952. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. Bureau of Standards, 49: 409–436. |
Библиографическая ссылка |
Lanczos, C. 1950. Solution of Systems of Linear Equations by Minimized Iterations. J. Res. Nat Bur. Standards, 49: 255–282. |
Библиографическая ссылка |
OLeary, D.P. 1980. The Block Conjugate Gradient Algorithm and Related Methods. Linear Algebra Applies, 29: 293–322. |
Библиографическая ссылка |
OLeary, D.P. 1987. Parallel implementation of the block conjugate gradient algorithm. Parallel Computing, 5: 127–139. |
Библиографическая ссылка |
Simoncini, V. and Gallopoulos, E. 1987. An iterative method for nonsymmetric systems with multiple right-hand sides. SIAM J. Sci. Comput, 5 to appear |