Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Konnov, Igrow V.
Дата выпуска 1997
dc.description An iterative method for finding equilibrium points in the case of a smooth convex-concave function and a convex feasible set is proposed. This set is defined by smooth concave functions. The method is based on combining and extending ideas contained in feasible direction methods and relaxation methods for optimization problems and convex inequalities
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Equilibrium Points
Тема Nonlinear Constraints
Тема Combined Method
Название A combined method for smooth equilibrium problems with nonlinear constraints
Тип research-article
DOI 10.1080/10556789708805659
Electronic ISSN 1029-4937
Print ISSN 1055-6788
Журнал Optimization Methods and Software
Том 7
Первая страница 311
Последняя страница 324
Аффилиация Konnov, Igrow V.; Department Of Applied Mathematics, Kazan University
Выпуск 3-4
Библиографическая ссылка Aubin, J.-P. 1984. L'Analyse Non Linéaire et Ses Motivations Économiques, Paris: Masson.
Библиографическая ссылка Manne, A.S., ed. 1985. “Economic Equilibrium: Model Formulation and Solution”. In Math. Progr. Study Vol. 23, Amsterdam, , North-Holland
Библиографическая ссылка Blum, E. and Oettli, W. 1993. From optimization and variational inequalities to equilibrium problems. The Math. Student, 63: 1–23.
Библиографическая ссылка Ferris, M.C. and Pang, J.-S. 1995. Engineering and Economic Applications of Complementarity Problems, Madison: University of Wisconsin. Math. Progr. Techn. Report 95-07, Computer Science Department
Библиографическая ссылка Cottle, R.W., Pang, J.-S and Stone, R.E. 1992. The Linear Complementarity Problems, New York: Academic Press.
Библиографическая ссылка Harker, P.T. and Pang, J.-S. 1990. Finite-dimensional variational inequality and nonlinear complementarity problem: A survey of theory, algorithms and applications. Math. Progr, 48: 161–220.
Библиографическая ссылка Pang, J.-S. 1994. “Complementarity problems”. In Handbook of Global Optimization, Edited by: Horst, R. and Pardalos, P. 271–338. Boston: Kluwer Academic Publishers.
Библиографическая ссылка Bakushinsky, A.B. and Goncharsky, A.V. 1989. Iterative Solution Methods for Ill-PoseProblems, Moscow: Nauka. (In Russian)
Библиографическая ссылка Uryasyev, S.P. 1990. Adaptive Algorithms of Stochastic Optimization and Game Theory, Moscow: Nauka.
Библиографическая ссылка Rockafellar, R.T. 1976. Monotone operators and the proximal point algorithm. SIAM J. on Control and Optimization, 14: 877–898.
Библиографическая ссылка Korpelevich, G.M. 1976. The extragradient method for finding saddle points and other problems. Matecon, 12: 35–49.
Библиографическая ссылка Konnov, I.V. 1993. Combined relaxation methods for finding equilibrium points and solving related problems. Russian Math (Izv. VUZ), 37(2): 44–51.
Библиографическая ссылка Zukhovitskii, S.I., Polyak, R.A. and Primak, M.E. 1969. Two methods of search for equilibrium points of n-person concave games. Soviet Math. Doklady, 10(2): 279–282.
Библиографическая ссылка Fukushima, M. 1986. A relaxed projection method for variational inequality. Math. Programming, 35(2): 58–70.
Библиографическая ссылка Taji, K. and Fukushima, M. 1994. A new merit function and a successive quadratic programming algorithm for variational inequality problems, Nara Inst. Sci and Technol. Techn. Rep. NAIST4S- TR94013
Библиографическая ссылка Dussault, J.P. 1995. Numerical stability and efficiency of penalty algorithms. SIAM J. Num. Anal, 32: 296–317.
Библиографическая ссылка Zoutendijk, G. 1960. Methods of Feasible Directions, Amsterdam: Elsevier.
Библиографическая ссылка Kulikov, A.N. and Fazylov, V.R. 1984. A finite solution method for systems of convex inequalities. Soviet Math. (Izv. VUZ), 28(11): 75–80.
Библиографическая ссылка Pshenichnyi, B.N. and Danilin, Yu.M. 1975. Numerical Methods in Extremal Problems, Moscow: Nauka. In Russian

Скрыть метаданые