Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Terlaky, T.
Дата выпуска 1985
dc.description Our paper presents a new Criss-Cross method for solving linear programming problems. Starting from a neither primal nor dual feasible solution, we reach an optimal solution in finite number of steps if it exists. If there is no optimal solution, then we show that there is not primal feasible or dual feasible solution, We prove the finiteness of this procedure. Our procedure is not the same as the primal or dual simplex method if we have a primal or dual feasible solution, so we have constructed a quite new procedure for solving linear programming problems.
Формат application.pdf
Издатель Akademic-Verlag
Копирайт Copyright Taylor and Francis Group, LLC
Тема Linear programming
Тема criss-cross method
Тема Primary: 90 C 05
Тема Secondary: 65 K 05
Название A convergent criss-cross method
Тип research-article
DOI 10.1080/02331938508843067
Electronic ISSN 1029-4945
Print ISSN 0233-1934
Журнал Optimization
Том 16
Первая страница 683
Последняя страница 690
Аффилиация Terlaky, T.; Department of Operations Research, Eötvös Lorand University
Выпуск 5
Библиографическая ссылка Balinsky, M.L. and Tucker, A.W. 1969. Duality theory of linear programs:A constructive approach with applications. SIAM Review, 11(3): 347–377.
Библиографическая ссылка Bland, R.G. 1977. A new pivoting rule for the simplex method. Mathematics of Operations Research, 2(2): 102–108.
Библиографическая ссылка Dantzig, G.B. 1963. Linear programming and extensions, Princenton: Princenton University Press.
Библиографическая ссылка Rockafellar, R.T. “The elementary vectors of a subspace of R<sup>n</sup> ”. In Combinatorial Mathematics and its Applications, Edited by: Dowling, T.A. 104–127. Chapel Hill: University of North-Carolina.
Библиографическая ссылка Zionts, S. 1969. The criss-cross method for solving linear programming problems. Management Science, 15(7): 426–445.
Библиографическая ссылка Zionts, S. 1972. Some empirical tests of the criss-cross method. Management Science, 19(4): 406–410.

Скрыть метаданые