Автор |
Terlaky, T. |
Дата выпуска |
1985 |
dc.description |
Our paper presents a new Criss-Cross method for solving linear programming problems. Starting from a neither primal nor dual feasible solution, we reach an optimal solution in finite number of steps if it exists. If there is no optimal solution, then we show that there is not primal feasible or dual feasible solution, We prove the finiteness of this procedure. Our procedure is not the same as the primal or dual simplex method if we have a primal or dual feasible solution, so we have constructed a quite new procedure for solving linear programming problems. |
Формат |
application.pdf |
Издатель |
Akademic-Verlag |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Linear programming |
Тема |
criss-cross method |
Тема |
Primary: 90 C 05 |
Тема |
Secondary: 65 K 05 |
Название |
A convergent criss-cross method |
Тип |
research-article |
DOI |
10.1080/02331938508843067 |
Electronic ISSN |
1029-4945 |
Print ISSN |
0233-1934 |
Журнал |
Optimization |
Том |
16 |
Первая страница |
683 |
Последняя страница |
690 |
Аффилиация |
Terlaky, T.; Department of Operations Research, Eötvös Lorand University |
Выпуск |
5 |
Библиографическая ссылка |
Balinsky, M.L. and Tucker, A.W. 1969. Duality theory of linear programs:A constructive approach with applications. SIAM Review, 11(3): 347–377. |
Библиографическая ссылка |
Bland, R.G. 1977. A new pivoting rule for the simplex method. Mathematics of Operations Research, 2(2): 102–108. |
Библиографическая ссылка |
Dantzig, G.B. 1963. Linear programming and extensions, Princenton: Princenton University Press. |
Библиографическая ссылка |
Rockafellar, R.T. “The elementary vectors of a subspace of R<sup>n</sup> ”. In Combinatorial Mathematics and its Applications, Edited by: Dowling, T.A. 104–127. Chapel Hill: University of North-Carolina. |
Библиографическая ссылка |
Zionts, S. 1969. The criss-cross method for solving linear programming problems. Management Science, 15(7): 426–445. |
Библиографическая ссылка |
Zionts, S. 1972. Some empirical tests of the criss-cross method. Management Science, 19(4): 406–410. |