A continuous set covering problem as a quasidifferentiable optimization problem
Jandl, H.; Wieder, K.; Jandl, H.; Inst. f. Statistik and math, Wirtschaftstheorie der Universität Karlsruhe; Wieder, K.; Inst. f. Statistik and math, Wirtschaftstheorie der Universität Karlsruhe
Журнал:
Optimization
Дата:
1988
Аннотация:
In this paper we present an algorithm to solve a family of finite covering problems in . Given a compact, finitely convex decomposable set and an integer we are looking for the centers and the minimal radius of m balls with the property . It will be shown that this problem can be reduced to the computation of Dirichtlet tessellations (Voronoi sets) and the computation of minima of quasidifferentiable optimization problems.
813.0Кб