Автор |
Rhee, Wansoo T. |
Дата выпуска |
1990 |
dc.description |
Consider a function f defined on the set of graphs on a fixed set of n vertices. Assume that f satisfies the following “continuity” condition: (<sup>*</sup>) |f(G) - f(G′)| ≦ 1 whenever G and G′ differ by at most one edge. (An example of such a function f is the maximum matching of the graph G) Then we prove that in either of the classical models and G <sub>n,p</sub> of random graphsf is very concentrated around its expectation. (The concentration bounds we obtain are of optimal order.). |
Формат |
application.pdf |
Издатель |
Akademic-Verlag |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Martingale inequality |
Тема |
random graphs |
Тема |
maximum matching size |
Тема |
Primary: 60 C 05 |
Тема |
Secondary: 60 G 42 |
Название |
A concentration inequality for maximum matching size in random graphs |
Тип |
research-article |
DOI |
10.1080/02331939008843608 |
Electronic ISSN |
1029-4945 |
Print ISSN |
0233-1934 |
Журнал |
Optimization |
Том |
21 |
Первая страница |
797 |
Последняя страница |
803 |
Аффилиация |
Rhee, Wansoo T.; Faculty of Management Science, The Ohio State University |
Выпуск |
5 |
Библиографическая ссылка |
Maurey, B. 1979. Espaees de BANACH; Constructions de Suites Symetriques. Comptes Rendus, Acad. Sci. Paris, 288: 678–681. |
Библиографическая ссылка |
Hoeffding, W. 1963. Probability Inequalities for Sums of Bounded Random Variables. J. Am. Stat. Assoc, 58: 13–30. |
Библиографическая ссылка |
Rhee, W. and Talagband, M. 1987. Martingale Inequalities and NP-Complete Problems. Math, of Oper. Res, 12(1): 177–181. |
Библиографическая ссылка |
Rhee, W. and Talagband, M. 1989. Martingale Inequalities, Interpolation and NP-Complete Problems. Math, of Oper. Res, 14(1): 91–96. |
Библиографическая ссылка |
Stout, W.F. 1974. Almost Sure Convergence, Academic Press. |