Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Rhee, Wansoo T.
Дата выпуска 1990
dc.description Consider a function f defined on the set of graphs on a fixed set of n vertices. Assume that f satisfies the following “continuity” condition: (<sup>*</sup>) |f(G) - f(G′)| ≦ 1 whenever G and G′ differ by at most one edge. (An example of such a function f is the maximum matching of the graph G) Then we prove that in either of the classical models and G <sub>n,p</sub> of random graphsf is very concentrated around its expectation. (The concentration bounds we obtain are of optimal order.).
Формат application.pdf
Издатель Akademic-Verlag
Копирайт Copyright Taylor and Francis Group, LLC
Тема Martingale inequality
Тема random graphs
Тема maximum matching size
Тема Primary: 60 C 05
Тема Secondary: 60 G 42
Название A concentration inequality for maximum matching size in random graphs
Тип research-article
DOI 10.1080/02331939008843608
Electronic ISSN 1029-4945
Print ISSN 0233-1934
Журнал Optimization
Том 21
Первая страница 797
Последняя страница 803
Аффилиация Rhee, Wansoo T.; Faculty of Management Science, The Ohio State University
Выпуск 5
Библиографическая ссылка Maurey, B. 1979. Espaees de BANACH; Constructions de Suites Symetriques. Comptes Rendus, Acad. Sci. Paris, 288: 678–681.
Библиографическая ссылка Hoeffding, W. 1963. Probability Inequalities for Sums of Bounded Random Variables. J. Am. Stat. Assoc, 58: 13–30.
Библиографическая ссылка Rhee, W. and Talagband, M. 1987. Martingale Inequalities and NP-Complete Problems. Math, of Oper. Res, 12(1): 177–181.
Библиографическая ссылка Rhee, W. and Talagband, M. 1989. Martingale Inequalities, Interpolation and NP-Complete Problems. Math, of Oper. Res, 14(1): 91–96.
Библиографическая ссылка Stout, W.F. 1974. Almost Sure Convergence, Academic Press.

Скрыть метаданые