Автор |
Kuntz, L. |
Дата выпуска |
1991 |
dc.description |
In this paper we give a necessary and sufficient condition for a quasidifferentiable function to be continuously codifferentiable. Using this result we present a conceptual descent method for the class of continuously codifferentiable functions, based on the idea of V. F. De-Myanov, S. Gamidov and T. I. Sivelina [5]. |
Формат |
application.pdf |
Издатель |
Akademic-Verlag |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Quasidifferential |
Тема |
codifferential |
Тема |
H-continuous |
Тема |
ε-inf-stationary point |
Тема |
Primary: 90 C 30 |
Название |
A characterization of continuously codifferentiable functions and some consequences |
Тип |
research-article |
DOI |
10.1080/02331939108843697 |
Electronic ISSN |
1029-4945 |
Print ISSN |
0233-1934 |
Журнал |
Optimization |
Том |
22 |
Первая страница |
539 |
Последняя страница |
547 |
Аффилиация |
Kuntz, L.; Inst. f. Statistik u. Math. Wirtschaftstheorie, Universitat Karlsruhe |
Выпуск |
4 |
Библиографическая ссылка |
Demyanov, V. and Vasilev, L.V. 1985. Nondifferentiable Optimization, New York: Optimization. Software. Publications Divisions |
Библиографическая ссылка |
Demyanov, V.F. and Rubinov, A.M. 1986. Quasidifferentiable calculus. Optimization, New York: Optimization Software. Publications Divisions |
Библиографическая ссылка |
Demyanov, V. 1987. Continuous generalized gradients for nonsmooth functions, 24–27. Springer-Veriag. Lecture Notes in Economics and Mathematical Systems 304 |
Библиографическая ссылка |
Demyanov, V.F. 1988. Kodifferenciruemost’ i kodifferencialy negladkikh funkcii. Dokl. Akad. Nauk SSSR, 303(5): 1038–1042. |
Библиографическая ссылка |
Demyanov, V.F., Gamidov, S. and Sivelina, T.I. 1986. “An algorithm for solving a certain class of quasidifferentiable functions”. In Quasidifferential Calculus, Mathematical programming study, Vol. 29, 74–84. Amsterdam: North-Holland. New York, Oxford |
Библиографическая ссылка |
Rockafellar, R.T. 1970. Convex Analysis Princeton, New Jersey |
Библиографическая ссылка |
Clarke, F.H. 1976. A new approach to Lagrange multipliers. Mathematics of OR, 1(2): 165–174. |
Библиографическая ссылка |
Pallaschke, D. and Pecht, P. 1984. On the steepest descent method for a class of quasi-differentiable optimization problems. Nondifferentiable Optimization: Motivations and Applications Proceedings. 1984, Sopron, Hungary. pp.252–263. Berlin: Springer-Verlag. Heidelberg, New York, Tokyo |
Библиографическая ссылка |
Pallaschke, D., Recht, P. and Urbanski, R. 1986. On locally LIPSCHTTZ quasidifferentiable functions in BANACH spaces. Optimization, 17: 287–295. |