Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Kuntz, L.
Дата выпуска 1991
dc.description In this paper we give a necessary and sufficient condition for a quasidifferentiable function to be continuously codifferentiable. Using this result we present a conceptual descent method for the class of continuously codifferentiable functions, based on the idea of V. F. De-Myanov, S. Gamidov and T. I. Sivelina [5].
Формат application.pdf
Издатель Akademic-Verlag
Копирайт Copyright Taylor and Francis Group, LLC
Тема Quasidifferential
Тема codifferential
Тема H-continuous
Тема ε-inf-stationary point
Тема Primary: 90 C 30
Название A characterization of continuously codifferentiable functions and some consequences
Тип research-article
DOI 10.1080/02331939108843697
Electronic ISSN 1029-4945
Print ISSN 0233-1934
Журнал Optimization
Том 22
Первая страница 539
Последняя страница 547
Аффилиация Kuntz, L.; Inst. f. Statistik u. Math. Wirtschaftstheorie, Universitat Karlsruhe
Выпуск 4
Библиографическая ссылка Demyanov, V. and Vasilev, L.V. 1985. Nondifferentiable Optimization, New York: Optimization. Software. Publications Divisions
Библиографическая ссылка Demyanov, V.F. and Rubinov, A.M. 1986. Quasidifferentiable calculus. Optimization, New York: Optimization Software. Publications Divisions
Библиографическая ссылка Demyanov, V. 1987. Continuous generalized gradients for nonsmooth functions, 24–27. Springer-Veriag. Lecture Notes in Economics and Mathematical Systems 304
Библиографическая ссылка Demyanov, V.F. 1988. Kodifferenciruemost’ i kodifferencialy negladkikh funkcii. Dokl. Akad. Nauk SSSR, 303(5): 1038–1042.
Библиографическая ссылка Demyanov, V.F., Gamidov, S. and Sivelina, T.I. 1986. “An algorithm for solving a certain class of quasidifferentiable functions”. In Quasidifferential Calculus, Mathematical programming study, Vol. 29, 74–84. Amsterdam: North-Holland. New York, Oxford
Библиографическая ссылка Rockafellar, R.T. 1970. Convex Analysis Princeton, New Jersey
Библиографическая ссылка Clarke, F.H. 1976. A new approach to Lagrange multipliers. Mathematics of OR, 1(2): 165–174.
Библиографическая ссылка Pallaschke, D. and Pecht, P. 1984. On the steepest descent method for a class of quasi-differentiable optimization problems. Nondifferentiable Optimization: Motivations and Applications Proceedings. 1984, Sopron, Hungary. pp.252–263. Berlin: Springer-Verlag. Heidelberg, New York, Tokyo
Библиографическая ссылка Pallaschke, D., Recht, P. and Urbanski, R. 1986. On locally LIPSCHTTZ quasidifferentiable functions in BANACH spaces. Optimization, 17: 287–295.

Скрыть метаданые