Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ward, D.E.
Дата выпуска 1991
dc.description One goal in quasid if Terentiable optimization is the development of optimality conditions whose hypotheses are independent of the particular choice of quasidifferentials. One such hypothesis, introduced by Demyanov and Rubinov, involves the concept of a pair of convex sets being “in a general position”. In this paper, a simple condition that implies the general position hypothesis is presented. This condition is also shown to be a constraint qualification for non-asymptotic Kuhn-Tucker conditions for a quasidifferentiable program.
Формат application.pdf
Издатель Akademic-Verlag
Копирайт Copyright Taylor and Francis Group, LLC
Тема Quasidifferential
Тема convex sets in a general position
Тема recession function
Тема subgradient
Тема upper convex approximate
Тема Primary:90 C 30
Тема Secondary:26 B 25
Тема Secondary:90 C 25
Название A constraint qualification in quasidifferentiable programming
Тип research-article
DOI 10.1080/02331939108843709
Electronic ISSN 1029-4945
Print ISSN 0233-1934
Журнал Optimization
Том 22
Первая страница 661
Последняя страница 668
Аффилиация Ward, D.E.; Dept. of Math. and Stat, Miami University
Выпуск 5
Библиографическая ссылка Borwein, J.M., Fitzpatrick, S.P. and Giles, J.R. 1987. The differentiability of real functions on normed linear space using generalized subgradients. Journal of Mathematical Analysis and Applications, 128: 512–534.
Библиографическая ссылка Demyanov, V.F. 1986. “Quasidifferential Calculus”. In Mathematical Programming Study 29, Edited by: Dixon, L.C.W. Amsterdam: North-Holland.
Библиографическая ссылка Demyanov, V.F. and Rubinov, A.M. 1986. Quasidifferential Calculus, New York: Optimization Software.
Библиографическая ссылка Demyanov, V.F. and Vasilev, L.V. 1985. Nondifferentiable Optimization, New York: Optimization Software.
Библиографическая ссылка Eppler, K. and Luderer, B. 1987. The Lagrange principle and quasidifferential calculus. Wiss. Z. d. TU Karl-Marx-Stadt, 29: 187–192.
Библиографическая ссылка Frankowska, H. 1985. Necessary conditions for the Bolza problem. Mathematics of Operations Research, 10: 361–366.
Библиографическая ссылка Giner, E. 1981. Ensembles et fonctions etoiles; applications a l’optimisation et au calcul differentiel generalise, Universite Paul Sabatier. Manuscript
Библиографическая ссылка Hiriart-Urruty, J.B. 1985. “Miscellanies on nonsmooth analysis and optimization”. In Nondifferentiable Optimization: Motivations and Applications, Edited by: Demyanov, V.F. and Pallaschke, D. Berlin: Springer-Verlag. Lecture Notes in Economics and Mathematical Systems
Библиографическая ссылка Luderer, B. 1989. The quasidifferential of an optimal value function in nonsmooth programming. Optimization, 20: 597–613.
Библиографическая ссылка Luderer, B. 1989. Directional derivative estimates for the optimal value function of a quasidifferentiable programming problem. Mathematical Programming, 20 to appear
Библиографическая ссылка Luderer, B. and Rösiger, R. 1990. Some remarks on Shapiro's results of quasidifferential calculus. Mathematical Programming, 46: 403–407.
Библиографическая ссылка Merkovsky, R.R. and Ward, D.E. 1990. Upper DSL approximates and nonsmooth optimization. Optimization, 21: 163–177.
Библиографическая ссылка Rockafellar, R.T. 1970. Convex Analysis, Princeton, N.J: Princeton University Press.
Библиографическая ссылка Shapiro, A. 1986. Quasidifferential calculus and first-order optimality conditions in nonsmooth optimization. Mathematical Programming Study, 29: 56–68.
Библиографическая ссылка Treiman, J.S. 1989. Finite dimensional optimality conditions: B-gradients. Journal of Optimization Theory and Applications, 62: 139–150.
Библиографическая ссылка Ward, D.E. 1990. “Convex directional derivatives in optimization”. In Generalized Convexity and Fractional Programming with Economic Applications, Berlin: Springer-Verlag. Lecture Notes in Economics and Mathematical Systems

Скрыть метаданые