Автор |
Ward, D.E. |
Дата выпуска |
1991 |
dc.description |
One goal in quasid if Terentiable optimization is the development of optimality conditions whose hypotheses are independent of the particular choice of quasidifferentials. One such hypothesis, introduced by Demyanov and Rubinov, involves the concept of a pair of convex sets being “in a general position”. In this paper, a simple condition that implies the general position hypothesis is presented. This condition is also shown to be a constraint qualification for non-asymptotic Kuhn-Tucker conditions for a quasidifferentiable program. |
Формат |
application.pdf |
Издатель |
Akademic-Verlag |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Quasidifferential |
Тема |
convex sets in a general position |
Тема |
recession function |
Тема |
subgradient |
Тема |
upper convex approximate |
Тема |
Primary:90 C 30 |
Тема |
Secondary:26 B 25 |
Тема |
Secondary:90 C 25 |
Название |
A constraint qualification in quasidifferentiable programming |
Тип |
research-article |
DOI |
10.1080/02331939108843709 |
Electronic ISSN |
1029-4945 |
Print ISSN |
0233-1934 |
Журнал |
Optimization |
Том |
22 |
Первая страница |
661 |
Последняя страница |
668 |
Аффилиация |
Ward, D.E.; Dept. of Math. and Stat, Miami University |
Выпуск |
5 |
Библиографическая ссылка |
Borwein, J.M., Fitzpatrick, S.P. and Giles, J.R. 1987. The differentiability of real functions on normed linear space using generalized subgradients. Journal of Mathematical Analysis and Applications, 128: 512–534. |
Библиографическая ссылка |
Demyanov, V.F. 1986. “Quasidifferential Calculus”. In Mathematical Programming Study 29, Edited by: Dixon, L.C.W. Amsterdam: North-Holland. |
Библиографическая ссылка |
Demyanov, V.F. and Rubinov, A.M. 1986. Quasidifferential Calculus, New York: Optimization Software. |
Библиографическая ссылка |
Demyanov, V.F. and Vasilev, L.V. 1985. Nondifferentiable Optimization, New York: Optimization Software. |
Библиографическая ссылка |
Eppler, K. and Luderer, B. 1987. The Lagrange principle and quasidifferential calculus. Wiss. Z. d. TU Karl-Marx-Stadt, 29: 187–192. |
Библиографическая ссылка |
Frankowska, H. 1985. Necessary conditions for the Bolza problem. Mathematics of Operations Research, 10: 361–366. |
Библиографическая ссылка |
Giner, E. 1981. Ensembles et fonctions etoiles; applications a l’optimisation et au calcul differentiel generalise, Universite Paul Sabatier. Manuscript |
Библиографическая ссылка |
Hiriart-Urruty, J.B. 1985. “Miscellanies on nonsmooth analysis and optimization”. In Nondifferentiable Optimization: Motivations and Applications, Edited by: Demyanov, V.F. and Pallaschke, D. Berlin: Springer-Verlag. Lecture Notes in Economics and Mathematical Systems |
Библиографическая ссылка |
Luderer, B. 1989. The quasidifferential of an optimal value function in nonsmooth programming. Optimization, 20: 597–613. |
Библиографическая ссылка |
Luderer, B. 1989. Directional derivative estimates for the optimal value function of a quasidifferentiable programming problem. Mathematical Programming, 20 to appear |
Библиографическая ссылка |
Luderer, B. and Rösiger, R. 1990. Some remarks on Shapiro's results of quasidifferential calculus. Mathematical Programming, 46: 403–407. |
Библиографическая ссылка |
Merkovsky, R.R. and Ward, D.E. 1990. Upper DSL approximates and nonsmooth optimization. Optimization, 21: 163–177. |
Библиографическая ссылка |
Rockafellar, R.T. 1970. Convex Analysis, Princeton, N.J: Princeton University Press. |
Библиографическая ссылка |
Shapiro, A. 1986. Quasidifferential calculus and first-order optimality conditions in nonsmooth optimization. Mathematical Programming Study, 29: 56–68. |
Библиографическая ссылка |
Treiman, J.S. 1989. Finite dimensional optimality conditions: B-gradients. Journal of Optimization Theory and Applications, 62: 139–150. |
Библиографическая ссылка |
Ward, D.E. 1990. “Convex directional derivatives in optimization”. In Generalized Convexity and Fractional Programming with Economic Applications, Berlin: Springer-Verlag. Lecture Notes in Economics and Mathematical Systems |