Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Foulds, L.R.
Автор Haugland, D.
Автор JÖrnsten, K.
Дата выпуска 1992
dc.description In this paper we present an algorithm for the pooling problem in refinery optimization based on a bilinear programming approach. The pooling problem occurs frequently in process optimization problems, especially refinery planning models. The main difficulty is that pooling causes an inherent nonlinearity in the otherwise linear models. We shall define the problem by formulating an aggregate mathematical model of a refinery, comment on solution methods for pooling problems that have been presented in the literature, and develop a new method based on convex approximations of the bilinear terms. The method is illustrated on numerical examples
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Pooling Problem
Тема Global Optimization
Тема Bilinear Programming
Название A bilinear approach to the pooling problem
Тип research-article
DOI 10.1080/02331939208843786
Electronic ISSN 1029-4945
Print ISSN 0233-1934
Журнал Optimization
Том 24
Первая страница 165
Последняя страница 180
Аффилиация Foulds, L.R.; Department of Management Science and Systems, University of Waikato
Аффилиация Haugland, D.; Dept. of Science and Technology, Chr. Michelsen Institute
Аффилиация JÖrnsten, K.; Institute for Finance and Management Science, The Norwegian School of Economics and Business Administration
Выпуск 1-2
Библиографическая ссылка Al-Khayyal, F.A. and Falk, J.E. 1983. Jointly Constrained Biconvex Programming. Mathematics of Operations Research, 8: 273–286.
Библиографическая ссылка Al-Khayyal, F.A. 1989. Jointly Constrained Bilinear Programs and Related Problems: An Overview, Atlanta, Georgia: Georgia Institute of Technology. Working Paper School of Industrial and Systems Engineering
Библиографическая ссылка Baker, T.E. and Lasdon, L. 1985. Successive Linear Programming at Exxon. Management Science, 31: 264–274.
Библиографическая ссылка Floudas, C.A. and Aggarwal, A. 1990. A Decomposition Strategy for Global Optimum Search in the Pooling Problem. ORSA Journal on computing, 2: 225–235.
Библиографическая ссылка Foulds, L.R., Haugland, D. and Jörnsten, K. Pooling Models in the Norwegian Petroleum Industry. New Zealand Operational Research: Proceedings from the 26th Annual Conference. pp.137–142.
Библиографическая ссылка Geoffrion, A.M. 1990. Generalized Benders Decomposition. Journal of Optimization Theory and Applications, 10(72): 237–260.
Библиографическая ссылка Griffith, R.E. and Stewart, R.A. 1961. A Nonlinear Programming Technique for the Optimization of Continuous Processing Systems. Management Science, 7(72): 379–392.
Библиографическая ссылка Haugland, D. 1989. Numerical Experiments with Successive Linear Programming Applied to Pooling Problems, Bergen, , Norway: Chr. Michelsen Institute. CMI-no. 30960-1
Библиографическая ссылка Haverly, C.A. 1978. Studies of the Behaviour of Recursion for the Pooling Problem. SIGMAP Bulletin, 25: 19–28.
Библиографическая ссылка Haverly, C.A. 1979. Behaviour of Recursion Model—More Studies. SIGMAP Bulletin, 26: 22–28.
Библиографическая ссылка Haverly, C.A. 1980. Recursion Model Behaviour—More Studies. SIGMAP Bulletin, 28
Библиографическая ссылка Lasdon, L.S., Waren, A.D., Sarkar, S. and Palacios-Gomez, F. 1979. Solving the Pooling Problem Using Generalized Reduced Gradient and Successive Linear Programming Methods. SlGMAP Bulletin, 27: 9–15.

Скрыть метаданые