Автор |
Facchinei, F. |
Автор |
Lucidi, S. |
Дата выпуска |
1992 |
dc.description |
In this paper we propose a new class of continuously differentiable globally exact penalty functions for the solution of minimization problems with simple bounds on some (all) of the variables. The penalty functions in this class fully exploit the structure of the problem and are easily computable. Furthermore we introduce a simple updating rule for the penalty parameter that can be used in conjunction with unconstrained minimization techniques to solve the original problem. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Nonlinear programming |
Тема |
exact penalty functions |
Тема |
bound constrained problems |
Название |
A Class of penalty functions for optimization problema with bound constraints |
Тип |
research-article |
DOI |
10.1080/02331939208843855 |
Electronic ISSN |
1029-4945 |
Print ISSN |
0233-1934 |
Журнал |
Optimization |
Том |
26 |
Первая страница |
239 |
Последняя страница |
259 |
Аффилиация |
Facchinei, F.; Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza“ |
Аффилиация |
Lucidi, S.; Istituto di Analisi dei Sistemi e Informatica del CNR |
Выпуск |
3-4 |
Библиографическая ссылка |
Bartles, R.H. 1980. A penalty linear programming method using reduced-gradient basisexchange techniques. Linear Algebra and its Applications, 29: 17–32. |
Библиографическая ссылка |
Bertsekas, D.P. 1976. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions on Automatic Control, 21: 174–184. |
Библиографическая ссылка |
Bertsekas, D.P. 1982. Projected Newton methods for optimization problems with simple constraints. SlAM Journal on Control and Optimization, 20: 221–246. |
Библиографическая ссылка |
Burke, J.V. and Moré, J.J. 1988. On the identification of active constraints. SlAM Journal on Numerical Analysis, 25: 1197–1211. |
Библиографическая ссылка |
Calamai, P.H. and Moré, J.J. 1987. Projected gradient methods for linearly constrained problems. Mathematical Programming, 39: 93–116. |
Библиографическая ссылка |
Coleman, T.F. and Hulbert, L.A. 1989. A direct active set algorithm for large sparse quadratic programs with simple bounds. Mathematical Programming, Series B, 45: 373–406. |
Библиографическая ссылка |
Conn, A.R. 1976. Linear programming via a nondifferentiable penalty function. SIAM Journal on Numerical Analysis, 13: 760–784. |
Библиографическая ссылка |
Conn, A.R., Gould, N.I.M. and Toint, Ph. 1988. Global convergence of a class of trust region algorithms for optimization problems with simple bounds. SIAM Journal on Numerical Analysis, 25: 433–460. |
Библиографическая ссылка |
Conn, A.R., Gould, N.I.M. and Toint, Ph. 1988. Testing a class of methods for solving minimization problems with simple bounds on the variables. Mathematics of computation, 50: 399–430. |
Библиографическая ссылка |
Cottle, R.W. and Goheen, M.S. 1978. “A special class of large quadratic programs”. In Nonlinear Programming 3, Edited by: Mangasarian, O.L., Meyer, R.R. and Robinson, S.M. 361–390. New York: Academic Press. |
Библиографическая ссылка |
Dembo, R.S. and Tulowitzki, U. 1983. On the minimization of quadratic functions subject to box constraints, New Haven: Yale University. Working Paper, Series B, no. 71, School of Organization and Management |
Библиографическая ссылка |
Di Pillo, G. and Grippo, L. 1986. An exact penalty method with global convergence properties for nonlinear programming problems. Mathematical Programming, 36: 1–18. |
Библиографическая ссылка |
Di Pillo, G. and Grippo, L. 1989. Exact penalty in constrained optimization. SIAM Journal on Control and Optimization, 27: 1333–1360. |
Библиографическая ссылка |
Dunn, J.C. 1981. Global and asymptotic convergence rate estimates for a class of projected gradient processes. SIAM Journal on Control and Optimization, 19: 368–400. |
Библиографическая ссылка |
Facchinei, F. and Lucidi, S. 1990. A class of methods for optimization problem with simple bounds Roma, , Italy Part 1. IASI-CNR Tech. Rep. 313 |
Библиографическая ссылка |
Facchinei, F. 1992. A class of methods for optimization problem with simple bounds Roma, , Italy Part 2. IASI-CNR Tech. Rep. 313 |
Библиографическая ссылка |
Fiacco, A.V. and McCormick, G.P. 1968. Nonlinear programming sequential unconstrained minimization techniques, New York: John Wiley. |
Библиографическая ссылка |
Freund, R.M. 1989. Theoretical efficiency of a shifted function algorithm for linear programming Cambridge, Massachusetts Sloan, W. P., 3002-89-MS, Massachusetts Institute of Technology |
Библиографическая ссылка |
Gill, P.E., Murray, W., Saunders, A., Tomlin, J.A., Wright, M.H., Gill, P.E., Murray, W. and Wright, M.H. 1981. Practical Optimization, London: Academic Press. |
Библиографическая ссылка |
Gill, P.E., Murray, W. and Wright, M.H. 1981. Practical Optimization, London: Academic Press. |
Библиографическая ссылка |
Gamble, A.B., Conn, A.R. and Pulleyblank, W.R. 1991. A network penalty method. Mathematical programming, 50: 53–73. |
Библиографическая ссылка |
Grippo, L. and Lucidi, S. 1991. On the solution of a class of quadratic programs using a differentiable exact penalty function. Optimization, 22: 557–578. |
Библиографическая ссылка |
Hestenes, M.R. 1975. Optimization Theory. The Finite Dimensional Case, New York: John Wiley. |
Библиографическая ссылка |
Hiriart-Urruty, J.B., Strodiot, J.J. and Nguyen, V.H. 1984. Generalized hessian matrix and second-order optimality conditions for problem with C<sup>1,1</sup> data. Applied Mathematics Optimization, 11: 43–56. |
Библиографическая ссылка |
Júdice, J.J. and Pires, F.M. 1989. Direct methods for convex quadratic programs subject to box constraints, Coimbra, , Portugal: Universidade de Coimbra. Preprint |
Библиографическая ссылка |
Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica, 4: 373–395. |
Библиографическая ссылка |
Lin, Y.Y. and Pang, J.S. 1987. Iterative methods for large convex quadratic programs: A survey. SIAM J. on Control and Optimization, 25: 383–411. |
Библиографическая ссылка |
Lötsted, P. 1984. Solving the minimal least square problems subject to bounds on the constraints. BIT, 24: 206–224. |
Библиографическая ссылка |
Moré, J.J. and Toraldo, G. 1989. Algorithms for bound constrained quadratic programming problems. Numerische Mathematik, 55: 377–400. |
Библиографическая ссылка |
Moré, J.J. and Toraldo, G. 1991. Numerical solution of large quadratic programming problems with bound constraints. SIAM Journal on Optimization, 1: 93–113. |
Библиографическая ссылка |
O’Leary, D.P. 1980. A generalized conjugate gradient algorithm for solving a class of quadratic programming problems. Linear Algebra Appl., 34: 371–399. |
Библиографическая ссылка |
Yang, E.K. and Tolle, J.W. 1988. “University of North Carolina, Department of Operations Research preprint”. In A class of methods for solving large convex quadratic programs subject to box constraints, North Carolina: Chapell Hill. |