Автор |
Ward, D.E. |
Дата выпуска |
1994 |
dc.description |
Just as first-order directional derivatives can be associated with concepts of tangent cone, so second-order directional derivatives of parabolic type can be naturally and profitably associated with second-order tangent sets. In this paper, a chain rule is presented for second-order directional derivatives whose corresponding tangent sets satisfy a short list of properties. This chain rule subsumes and sharpens previous results from the calculus of first- and second-order directional derivatives. Corollaries include second-order necessary optimality conditions for nondifferentiable programs. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Tangent Cone |
Тема |
Tangent Set |
Тема |
Approximate Subdifferential |
Тема |
Parabolic Second-Order Epiderivative |
Тема |
Metric Regularity |
Название |
A chain rule for parabolic second-order epiderivatives |
Тип |
research-article |
DOI |
10.1080/02331939408843917 |
Electronic ISSN |
1029-4945 |
Print ISSN |
0233-1934 |
Журнал |
Optimization |
Том |
28 |
Первая страница |
223 |
Последняя страница |
236 |
Аффилиация |
Ward, D.E.; Department of Mathematics and Statistics, Miami University |
Выпуск |
3-4 |
Библиографическая ссылка |
Aubin, J.P. and Frankowska, H. 1990. Set-Valued Analysis, Boston: Birkhäuser. |
Библиографическая ссылка |
Ben-Israel, A., Ben-Tal, A. and Zlobec, S. 1981. Optimality in Nonlinear Programming: A Feasible Directions Approach, New york: Wiley. |
Библиографическая ссылка |
Ben-Tal, A. and Zowe, J. 1982. A unifled theory of first and second order conditions for extremum problems in topological vector spaces. Math. Programming Study, 19: 39–77. |
Библиографическая ссылка |
Ben-Tal, A. and Zowe, J. 1985. Directional derivatives in nonsmooth optimization. J. Optim. Theory. Appl, 47: 483–490. |
Библиографическая ссылка |
Borwein, J.M. 1986. Stability and regular points of inequality systems. J. Optim. Theory Appl, 48: 9–52. |
Библиографическая ссылка |
Clarke, F.H. 1983. Optimization and Nonsmooth Analysis, New York: Wiley. |
Библиографическая ссылка |
Clarke, F.H. Methods of Dynamic and Nonsmooth Optimization. CBMS-NSF Conference Series in Applied Mathematics. Philadelphia: SIAM. |
Библиографическая ссылка |
Clarke, F.H. and Raissi, N. 1990. Formules ’intersection en analyse non lisse. Ann. Sc. Math. Qu é bec, 14: 121–129. |
Библиографическая ссылка |
Cominetti, R. 1990. Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim, 21: 265–287. |
Библиографическая ссылка |
Cominetti, R. 1991. On pseudo-differentiability. Trans. Amer. Math. Soc, 324: 843–865. |
Библиографическая ссылка |
Dolecki, S. 1982. Tangency and differentiation: some applications of convergence theory. Ann. Mat. Pura Appl, 130: 223–255. |
Библиографическая ссылка |
Elster, K.H. and Thierfelder, J. 1988. Abstract cone approximations and generalized differentiability in nonsmooth optimization. Optimization, 19: 315–341. |
Библиографическая ссылка |
Furukawa, N. and Yoshinaga, Y. 1988. Higher-order variational sets, variational derivatives and higherorder necessary conditions in abstract mathematical programming. Bulletin of Informatics and Cybernetics, 23: 9–40. |
Библиографическая ссылка |
Hiriart, J.B. 1979. New concepts in nondifferentiable programming. Bull. S. Math. Fra. M émoire, 60: 57–85. |
Библиографическая ссылка |
Hoffmann, K.H. and Kornstaedt, H.J. 1978. Higher-order necessary conditions in abstract mathematical programming. J. Optim. Theory Appl, 26: 533–568. |
Библиографическая ссылка |
Ioffe, A.D. 1979. Regular points of Lipschitz mappings. Trans. Amer. Math. Soc, 251: 61–69. |
Библиографическая ссылка |
Ioffe, A.D. 1984. Approximate subdifferentials and applications I: the finite-dimensional theory. Trans. Amer. Math. Soc, 281: 389–416. |
Библиографическая ссылка |
Jourani, A. 1993. Regularity and strong sufficient optimality conditions in differentiable optimization problems. Numer. Funct. Anal. Optim, 14: 69–87. |
Библиографическая ссылка |
Jourani, A. and Thibault, L. 1990. Approximate subdifferential and metric regularity: the finite-dimensional case. Math. Programming, 47: 203–218. |
Библиографическая ссылка |
Jourani, A. and Thibault, L. 1990. The use of metric graphical regularity in approximate subdifferential calculus rules in finite dimensions. Optimization, 21: 509–519. |
Библиографическая ссылка |
Kawasaki, H. 1988. Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualifications. J. Optim. Theory Appl, 57: 253–264. |
Библиографическая ссылка |
Kawasaki, H. 1988. An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems. Math. Programming, 41: 73–96. |
Библиографическая ссылка |
Kawasaki, H. 1988. The upper and lower second order directional derivatives for a sup-type function. Math. Programming, 41: 327–339. |
Библиографическая ссылка |
Linnemann, A. 1982. Higher-order necessary conditions for infinite optimization. J. Optim. Theory Appl, 38: 483–512. |
Библиографическая ссылка |
Mordukhovich, B.S. 1976. Maximum principle in the problem of time optimal response with nonsmooth constraints. J. Appl. Math. Mech, 40: 960–969. |
Библиографическая ссылка |
Mordukhovich, B.S. “Sensitivity analysis in nonsmooth optimization”. In Theoretical Aspects of Industrial Design, Edited by: Field, D.A. and Komkov, V. Philadelphia: SIAM Publications. |
Библиографическая ссылка |
Penot, J.P. 1982. On regularity conditions in mathematical programming. Math. Programming Study, 19: 167–199. |
Библиографическая ссылка |
Penot, J.P. 1984. Generalized higher-order derivatives and higher-order optimality conditions, University of Santiago. Preprint |
Библиографическая ссылка |
Penot, J.P. 1989. Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal, 13: 629–643. |
Библиографическая ссылка |
Robinson, S.M. 1976. Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numer. Anal, 13: 497–513. |
Библиографическая ссылка |
Rockafellar, R.T. 1979. Directionally Lipschitzian functions and subdifferential calculus. Proc. London Math. Soc, 39: 331–355. |
Библиографическая ссылка |
Rockafellar, R.T. 1981. The Theory of Subgradients and its Applications to Problems of Optimization: Convex and Nonconvex Functions, Berlin: Heldermann-Verlag. |
Библиографическая ссылка |
Rockafellar, R.T. 1985. Extensions of subgradient calculus with applications to optimization. Nonlinear Anal, 9: 665–698. |
Библиографическая ссылка |
Ward, D.E. 1987. Isotone tangent cones and nonsmooth optimization. Optimization, 18: 769–783. |
Библиографическая ссылка |
Ward, D.E. 1988. Which subgradients have sum formulas?. Nonlinear Anal, 12: 1231–1243. |
Библиографическая ссылка |
Ward, D.E. 1991. Chain rules for nonsmooth functions. J. Math. Anal. Appl, 158: 519–538. |
Библиографическая ссылка |
Ward, D.E. and Borwein, J.M. 1987. Nonsmooth calculus in finite dimensions. SIAM J. Control Optim, 25: 1312–1340. |