Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ward, D.E.
Дата выпуска 1994
dc.description Just as first-order directional derivatives can be associated with concepts of tangent cone, so second-order directional derivatives of parabolic type can be naturally and profitably associated with second-order tangent sets. In this paper, a chain rule is presented for second-order directional derivatives whose corresponding tangent sets satisfy a short list of properties. This chain rule subsumes and sharpens previous results from the calculus of first- and second-order directional derivatives. Corollaries include second-order necessary optimality conditions for nondifferentiable programs.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Tangent Cone
Тема Tangent Set
Тема Approximate Subdifferential
Тема Parabolic Second-Order Epiderivative
Тема Metric Regularity
Название A chain rule for parabolic second-order epiderivatives
Тип research-article
DOI 10.1080/02331939408843917
Electronic ISSN 1029-4945
Print ISSN 0233-1934
Журнал Optimization
Том 28
Первая страница 223
Последняя страница 236
Аффилиация Ward, D.E.; Department of Mathematics and Statistics, Miami University
Выпуск 3-4
Библиографическая ссылка Aubin, J.P. and Frankowska, H. 1990. Set-Valued Analysis, Boston: Birkhäuser.
Библиографическая ссылка Ben-Israel, A., Ben-Tal, A. and Zlobec, S. 1981. Optimality in Nonlinear Programming: A Feasible Directions Approach, New york: Wiley.
Библиографическая ссылка Ben-Tal, A. and Zowe, J. 1982. A unifled theory of first and second order conditions for extremum problems in topological vector spaces. Math. Programming Study, 19: 39–77.
Библиографическая ссылка Ben-Tal, A. and Zowe, J. 1985. Directional derivatives in nonsmooth optimization. J. Optim. Theory. Appl, 47: 483–490.
Библиографическая ссылка Borwein, J.M. 1986. Stability and regular points of inequality systems. J. Optim. Theory Appl, 48: 9–52.
Библиографическая ссылка Clarke, F.H. 1983. Optimization and Nonsmooth Analysis, New York: Wiley.
Библиографическая ссылка Clarke, F.H. Methods of Dynamic and Nonsmooth Optimization. CBMS-NSF Conference Series in Applied Mathematics. Philadelphia: SIAM.
Библиографическая ссылка Clarke, F.H. and Raissi, N. 1990. Formules ’intersection en analyse non lisse. Ann. Sc. Math. Qu é bec, 14: 121–129.
Библиографическая ссылка Cominetti, R. 1990. Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim, 21: 265–287.
Библиографическая ссылка Cominetti, R. 1991. On pseudo-differentiability. Trans. Amer. Math. Soc, 324: 843–865.
Библиографическая ссылка Dolecki, S. 1982. Tangency and differentiation: some applications of convergence theory. Ann. Mat. Pura Appl, 130: 223–255.
Библиографическая ссылка Elster, K.H. and Thierfelder, J. 1988. Abstract cone approximations and generalized differentiability in nonsmooth optimization. Optimization, 19: 315–341.
Библиографическая ссылка Furukawa, N. and Yoshinaga, Y. 1988. Higher-order variational sets, variational derivatives and higherorder necessary conditions in abstract mathematical programming. Bulletin of Informatics and Cybernetics, 23: 9–40.
Библиографическая ссылка Hiriart, J.B. 1979. New concepts in nondifferentiable programming. Bull. S. Math. Fra. M émoire, 60: 57–85.
Библиографическая ссылка Hoffmann, K.H. and Kornstaedt, H.J. 1978. Higher-order necessary conditions in abstract mathematical programming. J. Optim. Theory Appl, 26: 533–568.
Библиографическая ссылка Ioffe, A.D. 1979. Regular points of Lipschitz mappings. Trans. Amer. Math. Soc, 251: 61–69.
Библиографическая ссылка Ioffe, A.D. 1984. Approximate subdifferentials and applications I: the finite-dimensional theory. Trans. Amer. Math. Soc, 281: 389–416.
Библиографическая ссылка Jourani, A. 1993. Regularity and strong sufficient optimality conditions in differentiable optimization problems. Numer. Funct. Anal. Optim, 14: 69–87.
Библиографическая ссылка Jourani, A. and Thibault, L. 1990. Approximate subdifferential and metric regularity: the finite-dimensional case. Math. Programming, 47: 203–218.
Библиографическая ссылка Jourani, A. and Thibault, L. 1990. The use of metric graphical regularity in approximate subdifferential calculus rules in finite dimensions. Optimization, 21: 509–519.
Библиографическая ссылка Kawasaki, H. 1988. Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualifications. J. Optim. Theory Appl, 57: 253–264.
Библиографическая ссылка Kawasaki, H. 1988. An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems. Math. Programming, 41: 73–96.
Библиографическая ссылка Kawasaki, H. 1988. The upper and lower second order directional derivatives for a sup-type function. Math. Programming, 41: 327–339.
Библиографическая ссылка Linnemann, A. 1982. Higher-order necessary conditions for infinite optimization. J. Optim. Theory Appl, 38: 483–512.
Библиографическая ссылка Mordukhovich, B.S. 1976. Maximum principle in the problem of time optimal response with nonsmooth constraints. J. Appl. Math. Mech, 40: 960–969.
Библиографическая ссылка Mordukhovich, B.S. “Sensitivity analysis in nonsmooth optimization”. In Theoretical Aspects of Industrial Design, Edited by: Field, D.A. and Komkov, V. Philadelphia: SIAM Publications.
Библиографическая ссылка Penot, J.P. 1982. On regularity conditions in mathematical programming. Math. Programming Study, 19: 167–199.
Библиографическая ссылка Penot, J.P. 1984. Generalized higher-order derivatives and higher-order optimality conditions, University of Santiago. Preprint
Библиографическая ссылка Penot, J.P. 1989. Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal, 13: 629–643.
Библиографическая ссылка Robinson, S.M. 1976. Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numer. Anal, 13: 497–513.
Библиографическая ссылка Rockafellar, R.T. 1979. Directionally Lipschitzian functions and subdifferential calculus. Proc. London Math. Soc, 39: 331–355.
Библиографическая ссылка Rockafellar, R.T. 1981. The Theory of Subgradients and its Applications to Problems of Optimization: Convex and Nonconvex Functions, Berlin: Heldermann-Verlag.
Библиографическая ссылка Rockafellar, R.T. 1985. Extensions of subgradient calculus with applications to optimization. Nonlinear Anal, 9: 665–698.
Библиографическая ссылка Ward, D.E. 1987. Isotone tangent cones and nonsmooth optimization. Optimization, 18: 769–783.
Библиографическая ссылка Ward, D.E. 1988. Which subgradients have sum formulas?. Nonlinear Anal, 12: 1231–1243.
Библиографическая ссылка Ward, D.E. 1991. Chain rules for nonsmooth functions. J. Math. Anal. Appl, 158: 519–538.
Библиографическая ссылка Ward, D.E. and Borwein, J.M. 1987. Nonsmooth calculus in finite dimensions. SIAM J. Control Optim, 25: 1312–1340.

Скрыть метаданые