Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Simon, Richard
Автор Weiss, George H
Дата выпуска 1975
dc.description We consider a family of single step allocation methods for the reduction of number of patients given the poorer of two treatments in a sequential comparative clinical trial. The object of the trial is to choose the better treatment with a probability ≧ P<sup>*</sup>, where P<sup>*</sup> is assigned, when the difference in success probabilities is greater than or equal to an assigned δ<sup>*</sup>. We use the formulation of the trial as a symmetrical selection procedure, Bechhofer, Kiefer, Sobel, 1968, Sobel, Weiss, 1970. If the stopping rule is the difference in successes then either alternating allocation or play the winner allocation appears to be optimal (Robbins, 1956, Sobel, Weiss, 1970.) When the stopping rule takes failures into account alternating allocation is not optimal, and other sirategies become important
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Название A class of adaptive sampling schemes for selecting the better of two binomial populations
Тип research-article
DOI 10.1080/00949657508810108
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 4
Первая страница 37
Последняя страница 47
Аффилиация Simon, Richard; National Institutes of Health
Аффилиация Weiss, George H; National Institutes of Health
Выпуск 1
Библиографическая ссылка Bechhofer, R.E., Kiefer, J. and Sobel, M. 1968. Sequential Identification and Ranking Procedures, Edited by: . Chicago: University of Chicago Press.
Библиографическая ссылка Flehinger, B.J. and Lewis, T.A. 1971. Sequential Treatment Allocation in Clinical Trials. Biometrika, 58: 419–426.
Библиографическая ссылка Hoel, D.G. 1973. An inverse Stopping rule for play-the-winner sampling . journal of the american statistical association, 67: 148–151.
Библиографическая ссылка Hoel, D.G. and Sobel, M. 1972. “Comparisons of Sequential Procedures for Selecting the Best Binomial Population”. Edited by: . Vol. 4, 53–69. University of California Press.
Библиографическая ссылка Hoel, D.G., Sobel, M. and Weiss, G.H. 1972. A Two Stage Procedure for Choosing the Better of Two Binomial Populations. Biometrika, 59: 317–322.
Библиографическая ссылка Kiefer, J.E. and Weiss, G.H. 1971. A Truncated Test for Choosing the Better of Two Binomial Populations. Journal of the American Statistical Association, 66: 867–871.
Библиографическая ссылка Nebenzahl, E. and Sobel, M. 1972. Play-the-Winner Samping far a Fixed Sample Size Binomial Selection Problem. Biometrika, 59: 1–8.
Библиографическая ссылка Nebenzahl, E. 1970. Play the Winner Sampling in Selecting the Better of Two Binomial Populations. Department of Statistics Technical Report, University of Minnesota, 147
Библиографическая ссылка Robbins, H. 1956. A Sequential Decision Procedure with a Finite Memory. Proceedings of The National Academy of Science, 42: 920–923.
Библиографическая ссылка Sobel, M. and Weiss, G.H. 1970. Play-the-Winner for Selecting the Better of Two Binomial Populations. Biometrika, 57: 357–365.
Библиографическая ссылка Sobel, M. and Weiss, G.H. 1971a. A Comparison of Play-the-Winner and Vector-at-a-Time Sampling for Selecting the Better of Two Binomial Populations With Restricted Parameter Values. Trabajos de Estadistica y de Investigacion Operative, 22: 195–206.
Библиографическая ссылка Sobel, M. and Weiss, G.H. 1971b. Play-the-Winner and Inverse Sampling in Selecting the Better of Two Binomial Populations. Journal of the American Statistical Association, 66: 545–551.
Библиографическая ссылка Sobel, M. and Weiss, G.H. 1972. “Recent Results on Using the Play the Winner Sampling With Binomial Selection Problems”. In Proceedings of the Sixth Berkely Symposium on Mathematical Statistics and Probability, Edited by: . Vol. 1, 717–736. Berkeley and Los Angeles: University of California Press.
Библиографическая ссылка Zelen, M. 1969. Play-the-Winner Rule and the Controlled Clinical Trial. Journal of the American Statistical Association, 64: 131–146.

Скрыть метаданые