Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Wong, M. Anthony
Дата выпуска 1985
dc.description Determining the number of subpopulations from sample data is a major problem in cluster analysis. We assume in this study that the subpopulations correspond to modes of the population density function f. We then propose using test statistics based on the kth nearest neighbor clustering method to investigate the modality of f. A modified bootstrap procedure for estimating the sample significance levels of these statistics in the univariate case is described. The performance of this procedure in determining the number of subpopulations will be illustrated by generated and real data sets.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Subpopulations
Тема mode
Тема kth nearest neighbor clustering
Тема hypothesis testing
Тема bootstrap
Название A bootstrap testing procedure for investigating the number of subpopulations
Тип research-article
DOI 10.1080/00949658508810837
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 22
Первая страница 99
Последняя страница 112
Аффилиация Wong, M. Anthony; Sloan School of Management, Massachusetts Institute of Technology
Выпуск 2
Библиографическая ссылка Bock, H.H. On tests concerning the existence of a classification. First International Symposium on Data Analysis and Informatics. Vol. 2, pp.449–464.
Библиографическая ссылка Efron, B. 1979. Bootstrap methods—another look at the jack-knife. Annals of Statistics, 7: 1–26.
Библиографическая ссылка Engelman, L. and Hartigan, J.A. 1969. Percentage points of a test for clusters. Journal of the American Statistical Association, 64: 1647–1648.
Библиографическая ссылка Fisher, R.A. 1936. Use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: 179–188.
Библиографическая ссылка Friedman, J.H., Baskett, F. and Shustek, L.J. 1975. An algorithm for finding nearest neighbors. IEEE Transactions on Computers, C-24: 1000–1006.
Библиографическая ссылка Giacomelli, F., Wiener, J., Kruskal, J.B., Pomeran, J.W. and Loud, A.V. 1971. Subpopulations of blood lymphocytes demonstrated by quantitative cytochemistry. Journal of Histochemistry and Cytochemistry, 19: 426–433.
Библиографическая ссылка Good, I.J. and Gaskins, R.A. 1980. Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data. Journal of the American Statistical Association, 75: 42–73.
Библиографическая ссылка Hartigan, J.H. 1975. Clustering Algorithms, New York: John Wiley.
Библиографическая ссылка Hartigan, J.A. Clusters as modes. First International Symposium on Data Analysis and Informatics. Vol. 2, pp.433–448.
Библиографическая ссылка Hartigan, J.A. 1978. Asymptotic distributions for clustering criteria. Annals of Statistics, 6: 117–131.
Библиографическая ссылка Jain, A.J. and Waller, W.G. 1978. On the number of features in the classification of multivariate Gaussian data. Pattern Recognition, 10: 365–374.
Библиографическая ссылка Lee, K.L. 1979. Multivariate tests for clusters. Journal of the American Statistical Association, 74: 708–714.
Библиографическая ссылка Silverman, B. 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society, B-43: 97–99.
Библиографическая ссылка Wolfe, J.H. 1970. Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5: 329–350.
Библиографическая ссылка Wong, M.A. 1982. A hybrid clustering method for identifying high-density clusters. Journal of the American Statistical Association, 77: 841–847.
Библиографическая ссылка Wong, M.A. and Lane, T. 1983. A kth nearest neighbour clustering procedure. Journal of the Royal Statistical Society, B-45: 362–368.

Скрыть метаданые