Автор |
Wong, M. Anthony |
Дата выпуска |
1985 |
dc.description |
Determining the number of subpopulations from sample data is a major problem in cluster analysis. We assume in this study that the subpopulations correspond to modes of the population density function f. We then propose using test statistics based on the kth nearest neighbor clustering method to investigate the modality of f. A modified bootstrap procedure for estimating the sample significance levels of these statistics in the univariate case is described. The performance of this procedure in determining the number of subpopulations will be illustrated by generated and real data sets. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Subpopulations |
Тема |
mode |
Тема |
kth nearest neighbor clustering |
Тема |
hypothesis testing |
Тема |
bootstrap |
Название |
A bootstrap testing procedure for investigating the number of subpopulations |
Тип |
research-article |
DOI |
10.1080/00949658508810837 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
22 |
Первая страница |
99 |
Последняя страница |
112 |
Аффилиация |
Wong, M. Anthony; Sloan School of Management, Massachusetts Institute of Technology |
Выпуск |
2 |
Библиографическая ссылка |
Bock, H.H. On tests concerning the existence of a classification. First International Symposium on Data Analysis and Informatics. Vol. 2, pp.449–464. |
Библиографическая ссылка |
Efron, B. 1979. Bootstrap methods—another look at the jack-knife. Annals of Statistics, 7: 1–26. |
Библиографическая ссылка |
Engelman, L. and Hartigan, J.A. 1969. Percentage points of a test for clusters. Journal of the American Statistical Association, 64: 1647–1648. |
Библиографическая ссылка |
Fisher, R.A. 1936. Use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: 179–188. |
Библиографическая ссылка |
Friedman, J.H., Baskett, F. and Shustek, L.J. 1975. An algorithm for finding nearest neighbors. IEEE Transactions on Computers, C-24: 1000–1006. |
Библиографическая ссылка |
Giacomelli, F., Wiener, J., Kruskal, J.B., Pomeran, J.W. and Loud, A.V. 1971. Subpopulations of blood lymphocytes demonstrated by quantitative cytochemistry. Journal of Histochemistry and Cytochemistry, 19: 426–433. |
Библиографическая ссылка |
Good, I.J. and Gaskins, R.A. 1980. Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data. Journal of the American Statistical Association, 75: 42–73. |
Библиографическая ссылка |
Hartigan, J.H. 1975. Clustering Algorithms, New York: John Wiley. |
Библиографическая ссылка |
Hartigan, J.A. Clusters as modes. First International Symposium on Data Analysis and Informatics. Vol. 2, pp.433–448. |
Библиографическая ссылка |
Hartigan, J.A. 1978. Asymptotic distributions for clustering criteria. Annals of Statistics, 6: 117–131. |
Библиографическая ссылка |
Jain, A.J. and Waller, W.G. 1978. On the number of features in the classification of multivariate Gaussian data. Pattern Recognition, 10: 365–374. |
Библиографическая ссылка |
Lee, K.L. 1979. Multivariate tests for clusters. Journal of the American Statistical Association, 74: 708–714. |
Библиографическая ссылка |
Silverman, B. 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society, B-43: 97–99. |
Библиографическая ссылка |
Wolfe, J.H. 1970. Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5: 329–350. |
Библиографическая ссылка |
Wong, M.A. 1982. A hybrid clustering method for identifying high-density clusters. Journal of the American Statistical Association, 77: 841–847. |
Библиографическая ссылка |
Wong, M.A. and Lane, T. 1983. A kth nearest neighbour clustering procedure. Journal of the Royal Statistical Society, B-45: 362–368. |