Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор cobb, E.Benton
Автор Church, J.D.
Дата выпуска 1985
dc.description This paper describes computational methods for applying known theoretical results to obtain confidence bounds for a single location or scale parameter from quantal data using the discrete distribution of either the maximum likelihood or a method of moments estimator.For some standard dose-response models an algorithm which makes finding such bounds computationally feasible is described.Also described are more easily computed approximate confidence bounds based on the asymptotic distribution of the point estimators.Computational studies indicate that these methods can also be applied to the more practical problem of finding confidence bounds for location after estimating an unknown scale parameter.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Quantal response
Тема location parameter
Тема small-samples
Тема dose-response curve
Тема interval estimation
Тема bioassay
Название Small-sample interval estimation using quantal data
Тип research-article
DOI 10.1080/00949658508810846
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 22
Первая страница 189
Последняя страница 202
Аффилиация cobb, E.Benton; Department of Mathematics, University of Kansas
Аффилиация Church, J.D.; Department of Mathematics, University of Kansas
Выпуск 3-4
Библиографическая ссылка Brown, B.W. Jr. 1961. Some properties of the Spearman estimator in bioassay. Biometrika, 48: 573–578.
Библиографическая ссылка Clopper, C.J. and Pearson, E.S. 1934. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26: 404–413.
Библиографическая ссылка Cobb, E.B. and Church, J.D. 1983. Small-sample quantal response methods for estimating the location parameter for a location-scale family of dose-response curves. J.Amer.Statist.Assoc, 78: 99–107.
Библиографическая ссылка Haberman, S.J. 1974. The Analysis of Frequency Data, Chicago: University of Chicago Press.
Библиографическая ссылка Thomas, M.A. and Taub, A.E. 1982. Calculating binomial probabilities when the trial probabilities are unequal. J. Statist. Comput. and Simul, 14: 125–131.
Библиографическая ссылка Wilks, S.S. 1962. Mathematical Statistics, New York: John Wiley. Second printing with corrections 1963

Скрыть метаданые