Автор |
cobb, E.Benton |
Автор |
Church, J.D. |
Дата выпуска |
1985 |
dc.description |
This paper describes computational methods for applying known theoretical results to obtain confidence bounds for a single location or scale parameter from quantal data using the discrete distribution of either the maximum likelihood or a method of moments estimator.For some standard dose-response models an algorithm which makes finding such bounds computationally feasible is described.Also described are more easily computed approximate confidence bounds based on the asymptotic distribution of the point estimators.Computational studies indicate that these methods can also be applied to the more practical problem of finding confidence bounds for location after estimating an unknown scale parameter. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Quantal response |
Тема |
location parameter |
Тема |
small-samples |
Тема |
dose-response curve |
Тема |
interval estimation |
Тема |
bioassay |
Название |
Small-sample interval estimation using quantal data |
Тип |
research-article |
DOI |
10.1080/00949658508810846 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
22 |
Первая страница |
189 |
Последняя страница |
202 |
Аффилиация |
cobb, E.Benton; Department of Mathematics, University of Kansas |
Аффилиация |
Church, J.D.; Department of Mathematics, University of Kansas |
Выпуск |
3-4 |
Библиографическая ссылка |
Brown, B.W. Jr. 1961. Some properties of the Spearman estimator in bioassay. Biometrika, 48: 573–578. |
Библиографическая ссылка |
Clopper, C.J. and Pearson, E.S. 1934. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26: 404–413. |
Библиографическая ссылка |
Cobb, E.B. and Church, J.D. 1983. Small-sample quantal response methods for estimating the location parameter for a location-scale family of dose-response curves. J.Amer.Statist.Assoc, 78: 99–107. |
Библиографическая ссылка |
Haberman, S.J. 1974. The Analysis of Frequency Data, Chicago: University of Chicago Press. |
Библиографическая ссылка |
Thomas, M.A. and Taub, A.E. 1982. Calculating binomial probabilities when the trial probabilities are unequal. J. Statist. Comput. and Simul, 14: 125–131. |
Библиографическая ссылка |
Wilks, S.S. 1962. Mathematical Statistics, New York: John Wiley. Second printing with corrections 1963 |